1
|
Moradi SE, Shokrollahi A, Shahdost-Fard F. A green impedimetric aptasensor for non-invasive and high-selective detection of tramadol validated by molecular dynamic simulation. Talanta 2025; 287:127597. [PMID: 39837202 DOI: 10.1016/j.talanta.2025.127597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/25/2024] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
Although the dosage controlling of tramadol (TRA) as a banned deadly drug in human biofluids is medicolegally important a biocompatible method for its high-selective detection with fewer false interferences has been scarcely reported. Herein, a new impedimetric aptasensor is introduced by utilizing the aptamer (Apt) sequence with high affinity to TRA for the first time to non-invasively measure it. An oriented nanolayer of Au nanoparticles (AuNPs) is easily formed on the surface by the electrodeposition technique to high-densely load the Apt and embed the novel aptasensing interface via a user-friendly methodology. The visual interaction of Apt with its target has been explored using molecular dynamic (MD) simulation to confirm how Apt traps TRA in its arm. The aptasensor measured TRA in a concentration range of 50 pM to 1.3 nM with a limit of detection (LOD) of 16.66 pM in buffer. It also rendered good accuracy and recovery for human salivary and urinary analysis. In addition, the greenness profile of the proposed methodology has been validated with two international common indexes. The developed aptasensor promises a reasonable capability for TRA monitoring in real clinical or street narcotic samples according to green analytical chemistry (GAC).
Collapse
Affiliation(s)
| | | | - Faezeh Shahdost-Fard
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| |
Collapse
|
2
|
Sajadi SAA, Khorablou Z. Poly-taurine/poly-L-glutamic acid double-layer coating as potential candidates for surface modification of carbon felt electrode for discrimination and simultaneous detection of morphine and tramadol. Mikrochim Acta 2025; 192:249. [PMID: 40126639 DOI: 10.1007/s00604-025-07034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/08/2025] [Indexed: 03/26/2025]
Abstract
An ultrasensitive and reliable electrochemical scaffold was designed for the individual and simultaneous measurement of morphine (Mor) and tramadol (Trm) addictive and illegal drugs, utilizing a cost-effective and flexible carbon felt electrode modified with double-layer poly-taurine/poly-L-glutamic acid (P(Tau)/P(Glu)/CF). It is worth noting that drugs have now become a part of daily life in all societies, and the consumption of tranquilizers and opiates such as Mor and Trm has also increased. Given the frequent co-use of Mor and Trm, accurate and reliable methods for their simultaneous measurement are crucial. Simultaneous diagnostics make the determination more efficient and cost-effective by reducing the need for multiple sensors. Surface modification of CFE was carried out by a green approach, facile and straightforward route by layer-by-layer electropolymerization, forming a thin polymeric film with abundant functional groups responsible for anchoring narcotic drugs. The P(Tau)/P(Glu)/CFE composite showed an exceptionally high rate of active site exposure and proper electrochemical activity, attributed to the synergistic effects of the constituent materials. P(Tau)/P(Glu)/CFE was successfully used to detect saliva, urine, plasma, and body sweat samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Seyed Ali Akbar Sajadi
- Sharif Energy, Water and Environment Institute (SEWEI), Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran.
| | - Zeynab Khorablou
- Sharif Energy, Water and Environment Institute (SEWEI), Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
| |
Collapse
|
3
|
Radwan AS, El Hamd MA, El-Maghrabey M, Mansour FR, Mahdi WA, Alshehri S, Alsehli BR, Magdy G. A highly sensitive first derivative synchronous spectrofluorimetric approach for the simultaneous analysis of the anti-breast cancer co-administered drugs, letrozole and tramadol in dosage forms and human plasma at nanogram levels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124532. [PMID: 38820815 DOI: 10.1016/j.saa.2024.124532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Letrozole is an anticancer medication prescribed for the management of estrogen receptor-positive breast cancer in postmenopausal women. Chronic pain is prevalent in patients receiving chemotherapy, leading to the use of adjuvant analgesics such as tramadol. This work introduces the first analytical approach for the concurrent quantification of letrozole and tramadol, two co-administered drugs, employing a rapid, highly sensitive, eco-friendly, and cost-effective first derivative synchronous spectrofluorimetric technique. The fluorescence of tramadol and letrozole was measured at wavelengths of 235.9 nm and 241.9 nm, respectively using a wavelength difference (Δλ) of 60.0 nm. The developed approach demonstrated exceptional linearity (r ˃ 0.999) within the specified concentration ranges for tramadol (10.0-1200.0 ng/mL) and letrozole (1.0-140.0 ng/mL). The results demonstrated that the proposed technique exhibits a high level of sensitivity, with detection limits of 0.569 and 0.143 ng/mL for tramadol and letrozole, respectively, indicating the good bioanalytical applicability. The within-run precisions, both intra-day and inter-day, for both analytes, were less than 0.71 % RSD. The developed approach was effectively applied to simultaneously estimate the mentioned drugs in their tablets and human plasma samples, achieving high percentage recoveries and low % RSD values. In order to assess the environmental sustainability of the developed approach, Analytical GREEnnessNNESS (AGREE) and the Green Analytical Procedure Index (GAPI) metric tools were employed. Both tools revealed that the developed approach is excellent green, suggesting its usage as an environmentally-friendly alternative for the routine assayof the investigated pharmaceuticals. The developed approach was validated according to the ICHQ2 (R1) requirements.
Collapse
Affiliation(s)
- Aya Saad Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt.
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt.
| | - Mahmoud El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar R Alsehli
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33511, Egypt.
| |
Collapse
|
4
|
Hussain K, Ahmad R, Hassan S, Khan MY, Ahmad A, Alshammari MB, Ali MS, Lakho SA, Lee BI. Electrochemical detection of nalbuphine drug using oval-like ZnO nanostructure-based sensor. Anal Biochem 2024; 693:115595. [PMID: 38909770 DOI: 10.1016/j.ab.2024.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Monitoring pharmaceutical drugs in various mediums is crucial to mitigate adverse effects. This study presents a chemical sensor using an oval-like zinc oxide (ZnO) nanostructure for electrochemical detection of nalbuphine. The ZnO nanostructure, produced via an efficient sol-gel technique, was extensively characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible spectrophotometry, and fourier transform infrared spectroscopy (FTIR). A slurry of the ZnO nanostructure in a binder was applied to a glassy carbon electrode (GCE). The sensor's responsiveness to nalbuphine was assessed using linear sweep voltammetry (LSV), achieving optimal performance by fine-tuning the pH. The sensor demonstrated a proportional response to nalbuphine concentrations up to 150.0 nM with a good regression coefficient (R2) and a detection limit of 6.20 nM (S/N ratio of 3). Selectivity was validated against various interfering substances, and efficacy was confirmed through real sample analysis, highlighting the sensor's successful application for nalbuphine detection.
Collapse
Affiliation(s)
- Kanwal Hussain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Rafiq Ahmad
- 'New-Senior' Oriented Smart Health Care Education Center, Pukyong National University, Busan 48513, Republic of Korea.
| | - Sohail Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Muhammad Y Khan
- Department of Chemical Engineering, University of Karachi, Karachi, 75270, Sindh, Pakistan.
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Mohammed B Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Muhammad S Ali
- Department of Chemical Engineering, University of Karachi, Karachi, 75270, Sindh, Pakistan
| | - Saeed A Lakho
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sindh, Jamshoro, 76080. Sindh, Pakistan
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
5
|
Kokilambigai KS, Irina VM, Sheba Mariam KC, Adila K, Kathirvel S. Comprehensive overview of analytical and bioanalytical methodologies for the opioid analgesics - Tramadol and combinations. Anal Biochem 2024; 692:115579. [PMID: 38797485 DOI: 10.1016/j.ab.2024.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Synthetic opioids like Tramadol are used to treat mild to moderate pain. Its ability to relieve pain is about a tenth that of morphine. Furthermore, Tramadol shares similar effects on serotonin and norepinephrine to several antidepressants known as serotonin-norepinephrine reuptake inhibitors (SNRIs), such as venlafaxine and duloxetine. The present review paper discusses the recent developments in analytical methods for identifying drugs in pharmaceutical preparations and toxicological materials, such as blood, saliva, urine, and hair. In recent years, a wide variety of analytical instruments, including capillary electrophoresis, NMR, UV-visible spectroscopy, HPTLC, HPLC, LC-MS, GC, GC-MS, and electrochemical sensors, have been used for drug identification in pharmaceutical preparations and toxicological samples. The primary quantification techniques currently employed for its quantification in various matrices are highlighted in this research.
Collapse
Affiliation(s)
- K S Kokilambigai
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - V M Irina
- Dr. Moopen's College of Pharmacy, Naseera Nagar, Meppadi PO, Wayanad, 673577, Kerala, India
| | - K C Sheba Mariam
- Department of Pharmaceutical Analysis, National College of Pharmacy, Manassery, Mukkam Post., Kozhikode, 673602, Kerala, India
| | - K Adila
- Department of Pharmaceutical Analysis, National College of Pharmacy, Manassery, Mukkam Post., Kozhikode, 673602, Kerala, India
| | - S Kathirvel
- Department of Pharmaceutical Analysis, National College of Pharmacy, Manassery, Mukkam Post., Kozhikode, 673602, Kerala, India.
| |
Collapse
|
6
|
Zafar K, Wasim M, Fatima B, Hussain D, Mehmood R, Najam-Ul-Haq M. Quantification of tramadol and serotonin by cobalt nickel tungstate in real biological samples to evaluate the effect of analgesic drugs on neurotransmitters. Sci Rep 2023; 13:10239. [PMID: 37353529 PMCID: PMC10290146 DOI: 10.1038/s41598-023-37053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
In this work, CoNiWO4 nanocomposite was used as an electrochemical sensor for the simultaneous electrochemical detection of tramadol and serotonin. The nanocomposite was synthesized using a hydrothermal method and characterized via XRD, SEM, TGA, Zeta, UV, and FTIR. The sensor was developed by depositing CoNiWO4-NPs onto the glassy carbon electrode surface. Tramadol and serotonin were detected by employing cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. Analytes were detected at different pH, concentrations, and scan rates. The prepared sensor showed a 0-60 µM linear range, with a LOD of 0.71 µM and 4.29 µM and LOQ of 14.3 µM and 2.3 µM for serotonin and tramadol, respectively. Finally, the modified electrode (CoNiWO4-GCE) was applied to determine tramadol and serotonin in biological samples.
Collapse
Affiliation(s)
- Komal Zafar
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Wasim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | | | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
7
|
Garkani Nejad F, Beitollahi H, Sheikhshoaie I. A UiO-66-NH 2 MOF/PAMAM Dendrimer Nanocomposite for Electrochemical Detection of Tramadol in the Presence of Acetaminophen in Pharmaceutical Formulations. BIOSENSORS 2023; 13:bios13050514. [PMID: 37232874 DOI: 10.3390/bios13050514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
In this work, we prepared a novel electrochemical sensor for the detection of tramadol based on a UiO-66-NH2 metal-organic framework (UiO-66-NH2 MOF)/third-generation poly(amidoamine) dendrimer (G3-PAMAM dendrimer) nanocomposite drop-cast onto a glassy carbon electrode (GCE) surface. After the synthesis of the nanocomposite, the functionalization of the UiO-66-NH2 MOF by G3-PAMAM was confirmed by various techniques including X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM), and Fourier transform infrared (FT-IR) spectroscopy. The UiO-66-NH2 MOF/PAMAM-modified GCE exhibited commendable electrocatalytic performance toward the tramadol oxidation owing to the integration of the UiO-66-NH2 MOF with the PAMAM dendrimer. According to differential pulse voltammetry (DPV), it was possible to detect tramadol under optimized circumstances in a broad concentration range (0.5 μM-500.0 μM) and a narrow limit of detection (0.2 μM). In addition, the stability, repeatability, and reproducibility of the presented UiO-66-NH2 MOF/PAMAM/GCE sensor were also studied. The sensor also possessed an acceptable catalytic behavior for the tramadol determination in the co-existence of acetaminophen, with the separated oxidation potential of ΔE = 410 mV. Finally, the UiO-66-NH2 MOF/PAMAM-modified GCE exhibited satisfactory practical ability in pharmaceutical formulations (tramadol tablets and acetaminophen tablets).
Collapse
Affiliation(s)
- Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
8
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
9
|
Ehirim T, Ozoemena OC, Mwonga PV, Haruna AB, Mofokeng TP, De Wael K, Ozoemena KI. Onion-like Carbons Provide a Favorable Electrocatalytic Platform for the Sensitive Detection of Tramadol Drug. ACS OMEGA 2022; 7:47892-47905. [PMID: 36591171 PMCID: PMC9798499 DOI: 10.1021/acsomega.2c05722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
This work reports the first study on the possible application of nanodiamond-derived onion-like carbons (OLCs), in comparison with conductive carbon black (CB), as an electrode platform for the electrocatalytic detection of tramadol (an important drug of abuse). The physicochemical properties of OLCs and CB were determined using X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA). The OLC exhibits, among others, higher surface area, more surface defects, and higher thermal stability than CB. From the electrochemical analysis (interrogated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy), it is shown that an OLC-modified glassy carbon electrode (GCE-OLC) allows faster electron transport and electrocatalysis toward tramadol compared to a GCE-CB. To establish the underlying science behind the high performance of the OLC, theoretical calculations (density functional theory (DFT) simulations) were conducted. DFT predicts that OLC allows for weaker surface binding of tramadol (E ad = -26.656 eV) and faster kinetic energy (K.E. = -155.815 Ha) than CB (E ad = -40.174 eV and -305.322 Ha). The GCE-OLC shows a linear calibration curve for tramadol over the range of ∼55 to 392 μM, with high sensitivity (0.0315 μA/μM) and low limit of detection (LoD) and quantification (LoQ) (3.8 and 12.7 μM, respectively). The OLC-modified screen-printed electrode (SPE-OLC) was successfully applied for the sensitive detection of tramadol in real pharmaceutical formulations and human serum. The OLC-based electrochemical sensor promises to be useful for the sensitive and accurate detection of tramadol in clinics, quality control, and routine quantification of tramadol drugs in pharmaceutical formulations.
Collapse
Affiliation(s)
- Tobechukwu
J. Ehirim
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Okoroike C. Ozoemena
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Patrick V. Mwonga
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Aderemi B. Haruna
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Thapelo P. Mofokeng
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| | - Karolien De Wael
- A-Sense
Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
- NANOlab
Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Kenneth I. Ozoemena
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg2050, South Africa
| |
Collapse
|
10
|
Sadrabadi EA, Khosravi F, Benvidi A, Shiralizadeh Dezfuli A, Khashayar P, Khashayar P, Azimzadeh M. Alprazolam Detection Using an Electrochemical Nanobiosensor Based on AuNUs/Fe-Ni@rGO Nanocomposite. BIOSENSORS 2022; 12:945. [PMID: 36354454 PMCID: PMC9687846 DOI: 10.3390/bios12110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Despite all the psychological advantages of alprazolam, its long list of toxic properties and interactions has caused concern and highlighted the need for a reliable sensing method. In this study, we developed a simple, highly sensitive electrochemical nanobiosensor to determine the desirable dose of alprazolam, averting the undesirable consequences of overdose. Gold nanourchins (AuNUs) and iron-nickel reduced graphene oxide (Fe-Ni@rGO) were immobilized on a glassy carbon electrode, which was treated beforehand. The electrode surface was characterized using cyclic voltammetry, Fourier transform infrared spectroscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy, and differential pulse voltammetry. The fabricated sensor showed two linear ranges (4 to 500 µg L-1 and 1 to 50 mg L-1), low limit of detection (1 µg L-1), high sensitivity, good repeatability, and good recovery. Increased -OH and carboxyl (-COOH) groups on the electrode surface, resulting in improved the adsorption of alprazolam and thus lower limit of detection. This nanobiosensor could detect alprazolam powder dissolved in diluted blood serum; we also studied other benzodiazepine drugs (clonazepam, oxazepam, and diazepam) with this nanobiosensor, and results were sensible, with a significant difference.
Collapse
Affiliation(s)
| | - Fatemeh Khosravi
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8915173143, Iran
| | - Ali Benvidi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 8915818411, Iran
| | - Amin Shiralizadeh Dezfuli
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran 1439957131, Iran
- Ronash Technology Pars Company, Tehran 1439817435, Iran
| | - Pouria Khashayar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G3 8QP, UK
| | - Patricia Khashayar
- Center for Microsystem Technology, Imec and Ghent University, 9000 Gent, Belgium
| | - Mostafa Azimzadeh
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8915173143, Iran
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| |
Collapse
|
11
|
Yence M, Cetinkaya A, Kaya SI, Ozkan SA. Recent Developments in the Sensitive Electrochemical Assay of Common Opioid Drugs. Crit Rev Anal Chem 2022; 54:882-895. [PMID: 35853096 DOI: 10.1080/10408347.2022.2099732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Opioids are a class of drugs used to treat moderate to severe pain and have short-term adverse effects. Nevertheless, they are considered necessary for pain management. However, well-known hazards are connected with an opioid prescription, such as overuse, addiction, and overdose deaths. For example, the death rate from opioid analgesic poisoning in the USA approximately doubled, owing to the overuse and addiction of opioid analgesics. Also, opioids are a very important group of analytes in forensic chemistry, so it is necessary to use reliable, fast, and sensitive analytical tools to determine opioid analgesics. This review focuses on the opioid overdose crisis, the properties of commonly used opioid drugs, their mechanism, effects, and some chromatographic and spectroscopic detection methods are explained briefly. Then most essentially recent developments covering the last ten years in the sensitive electrochemical methods of common opioid analgesics, their innovations and features, and future research directions are presented.
Collapse
Affiliation(s)
- Merve Yence
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022; 54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The strong development of mankind is inseparable from the proper use of drugs, and the electroanalytical research of drugs occupies an important position in the field of analytical chemistry. This review mainly elaborates the research progress of drugs electroanalysis based on direct electrochemical redox on various electrodes for the recent decade from 2011 to 2021. At first, we summarize some frequently used electrochemical data processing and electrochemical mechanism research derivation methods in the literature. Then, according to the drug therapeutic and application/usage purposes, the research progress of drugs electrochemical analysis is classified and discussed, where we focus on drugs electrochemical reaction mechanism. At the same time, the comparisons of electrochemical sensing performance of the drugs on various electrodes from recent studies are listed, so that readers can more intuitively compare and understand the electroanalytical sensing performance of each modified electrode for each of the drug. Finally, this review discusses the shortcomings and prospects of the drugs electroanalysis based on direct electrochemical redox research.
Collapse
Affiliation(s)
- Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Feichen Shen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Rupesh K Mishra
- Identify Sensors Biologics at Bindley Bioscience Center, West Lafayette, Indiana, USA
- School of Material Science and Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Zhao
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
13
|
Tarahomi S, Rounaghi GH, Daneshvar L, Eftekhari M. A Carbon Ionic Liquid Paste Sensor Modified with Lanthanum Nanorods /MWCNTs/Nafion Hybrid Composite for Carbamazepine Screening in Biological and Pharmaceutical Media. ChemistrySelect 2021. [DOI: 10.1002/slct.202102600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Somayeh Tarahomi
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | | | - Leili Daneshvar
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Mohammad Eftekhari
- Department of Chemistry Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
14
|
Hedayati N, Taghdisi SM, Yazdian-Robati R, Mansouri A, Abnous K, Ahmad Mohajeri S. Selection of DNA aptamers for tramadol through the systematic evolution of ligands by exponential enrichment method for fabrication of a sensitive fluorescent aptasensor based on graphene oxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119840. [PMID: 33965888 DOI: 10.1016/j.saa.2021.119840] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Tramadol hydrochloride (TH), as an atypical opioid and a 4-phenyl-piperidine analogue of codeine, is mainly used for treating moderate to severe pains. Due to its extensive application, the consequent need for its analysis in various samples is essential. The current study focuses on the introduction of a rapid fluorescent assay using graphene oxide (GO) and aptamer for determination of tramadol in serum samples. Specific ssDNA aptamers for TH were developed by SELEX (Systematic Evolution of Ligands by EXponential Enrichment) technique using GO as a fluorescence quencher. After 10 rounds, two aptamers (Apt19 and Apt39) were selected from various families. Then, the binding constants of aptamers were measured using fluorometric assay and finally Apt39 (labeled with ATTO 647N) was chosen for development of a fluorescent aptasensor because this aptamer bound to TH with high affinity (Kd = 178.4 nM) and specificity. The current analytical system showed detection limits of 1.04 nM and 2.56 nM in serum sample and phosphate buffer saline (10 mM PBS), respectively.
Collapse
Affiliation(s)
- Narges Hedayati
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atena Mansouri
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Boonmee W, Samoson K, Yodrak J, Thiagchanya A, Phonchai A, Limbut W. Adsorptive Cathodic Stripping Voltammetry for Quantification of Alprazolam. Molecules 2021; 26:molecules26102958. [PMID: 34065709 PMCID: PMC8156809 DOI: 10.3390/molecules26102958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
A simple and highly sensitive electrochemical sensor was developed for adsorptive cathodic stripping voltammetry of alprazolam. Based on an electrochemically pretreated glassy carbon electrode, the sensor demonstrated good adsorption and electrochemical reduction of alprazolam. The morphology of the glassy carbon electrode and the electrochemically pretreated glassy carbon electrode were characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical behaviors of alprazolam were determined by cyclic voltammetry, and the analytical measurements were studied by adsorptive cathodic stripping voltammetry. Optimized operational conditions included the concentration and deposition time of sulfuric acid in the electrochemical pretreatment, preconcentration potential, and preconcentration time. Under optimal conditions, the developed alprazolam sensor displayed a quantification limit of 0.1 mg L-1, a detection limit of 0.03 mg L-1, a sensitivity of 67 µA mg-1 L cm-2 and two linear ranges: 0.1 to 4 and 4 to 20 mg L-1. Sensor selectivity was excellent, and repeatability (%RSD < 4.24%) and recovery (82.0 ± 0.2 to 109.0 ± 0.3%) were good. The results of determining alprazolam in beverages with the developed system were in good agreement with results from the gas chromatography-mass spectrometric method.
Collapse
Affiliation(s)
- Waree Boonmee
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (W.B.); (K.S.); (A.T.); (A.P.)
- Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kritsada Samoson
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (W.B.); (K.S.); (A.T.); (A.P.)
- Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, HatYai, Songkhla 90112, Thailand
| | - Janjira Yodrak
- Satun Provincial Police Forensic Science, Police Forensic Science Center 9, Office of Police Forensic Science, Royal Thai Police, Mueangsatun, Satun 91000, Thailand;
| | - Adul Thiagchanya
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (W.B.); (K.S.); (A.T.); (A.P.)
| | - Apichai Phonchai
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (W.B.); (K.S.); (A.T.); (A.P.)
- Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (W.B.); (K.S.); (A.T.); (A.P.)
- Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, HatYai, Songkhla 90112, Thailand
- Correspondence: ; Tel.: +66-74-288563
| |
Collapse
|
16
|
Verrinder E, Wester N, Leppänen E, Lilius T, Kalso E, Mikladal B, Varjos I, Koskinen J, Laurila T. Electrochemical Detection of Morphine in Untreated Human Capillary Whole Blood. ACS OMEGA 2021; 6:11563-11569. [PMID: 34056312 PMCID: PMC8154029 DOI: 10.1021/acsomega.1c00773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 05/04/2023]
Abstract
Disposable single-use electrochemical sensor strips were used for quantitative detection of small concentrations of morphine in untreated capillary whole blood. Single-walled carbon nanotube (SWCNT) networks were fabricated on a polymer substrate to produce flexible, reproducible sensor strips with integrated reference and counter electrodes, compatible with industrial-scale processes. A thin Nafion coating was used on top of the sensors to enable direct electrochemical detection in whole blood. These sensors were shown to detect clinically relevant concentrations of morphine both in buffer and in whole blood samples. Small 38 μL finger-prick blood samples were spiked with 2 μL of morphine solution of several concentrations and measured without precipitation of proteins or any other further pretreatment. A linear range of 0.5-10 μM was achieved in both matrices and a detection limit of 0.48 μM in buffer. In addition, to demonstrate the applicability of the sensor in a point-of-care device, single-determination measurements were done with capillary samples from three subjects. An average recovery of 60% was found, suggesting that the sensor only measures the free, unbound fraction of the drug. An interference study with other opioids and possible interferents showed the selectivity of the sensor. This study clearly indicates that these Nafion/SWCNT sensor strips show great promise as a point-of-care rapid test for morphine in blood.
Collapse
Affiliation(s)
- Elsi Verrinder
- Department
of Electrical Engineering and Automation, Aalto University, Tietotie 3, Espoo 02150, Finland
| | - Niklas Wester
- Department
of Chemistry and Materials Science, Aalto
University, Kemistintie
1, Espoo 02150, Finland
| | - Elli Leppänen
- Department
of Electrical Engineering and Automation, Aalto University, Tietotie 3, Espoo 02150, Finland
| | - Tuomas Lilius
- Department
of Pharmacology, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
- Department
of Clinical Pharmacology, University of
Helsinki and Helsinki University Hospital, Tukholmankatu 8C, Helsinki 00290, Finland
- Emergency
Medicine, University of Helsinki and Department of Emergency Medicine
and Services, Helsinki University Hospital, Helsinki 00014, Finland
| | - Eija Kalso
- Department
of Pharmacology, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
- Department
of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2A, Helsinki 00290, Finland
| | | | - Ilkka Varjos
- Canatu
Oy, Tiilenlyöjänkuja 9, Vantaa 01720, Finland
| | - Jari Koskinen
- Department
of Chemistry and Materials Science, Aalto
University, Kemistintie
1, Espoo 02150, Finland
| | - Tomi Laurila
- Department
of Electrical Engineering and Automation, Aalto University, Tietotie 3, Espoo 02150, Finland
- Department
of Chemistry and Materials Science, Aalto
University, Kemistintie
1, Espoo 02150, Finland
| |
Collapse
|
17
|
Atta NF, Abdo GG, Elzatahry A, Galal A, Hassan SH. Designed electrochemical sensor based on metallocene modified conducting polymer composite for effective determination of tramadol in real samples. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel composite for the electrochemical sensing of tramadol (Tr) was developed by the inclusion of a metallocene mediator between two layers of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) polymer, in the presence of sodium dodecyl sulfate (SDS), i.e., P/mediator/P⋯SDS. Three charge transfer mediators were evaluated: ferrocene carboxylic acid (FC1), ferrocene (FC2), and cobaltocene (CC) for Tr electrocatalytic oxidation. The FC1 charge mediator showed a relatively higher current response that was assisted by the electronic conduction of the polymer film. Moreover, SDS presented a great impact, resulting in the enhancement of the preconcentration and (or) accumulation of Tr ions at the interface, leading to faster electron transfer. In addition, the practical application of the proposed FC1 composite for the determination of Tr in real urine and serum samples was successfully achieved with adequate recovery results. Very low detection limits of 18.6 nM and 16 nM in the linear dynamic ranges of 7–300 µM and 5–280 µM, respectively, were obtained at the proposed sensor. Furthermore, the simultaneous determination of Tr with common interfering species, paracetamol (APAP), morphine (MO), dopamine (DA), ascorbic acid (AA) and uric acid (UA), proved excellent, with good resolution and large potential peaks separation. The excellent characteristics of the proposed composite such as high reproducibility, good sensitivity, selectivity, anti-interference ability, and good stability enhanced its application for determination of other narcotic drugs.
Collapse
Affiliation(s)
- Nada F. Atta
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Ghada G. Abdo
- College of Pharmacy, Qatar University, P.O. Box, Doha 2713, Qatar
| | - Ahmed Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Ahmed Galal
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Samar H. Hassan
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
18
|
Wester N, Mikladal BF, Varjos I, Peltonen A, Kalso E, Lilius T, Laurila T, Koskinen J. Disposable Nafion-Coated Single-Walled Carbon Nanotube Test Strip for Electrochemical Quantitative Determination of Acetaminophen in a Finger-Prick Whole Blood Sample. Anal Chem 2020; 92:13017-13024. [PMID: 32842738 PMCID: PMC7547857 DOI: 10.1021/acs.analchem.0c01857] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
A disposable
electrochemical test strip for the quantitative point-of-care
(POC) determination of acetaminophen (paracetamol) in plasma and finger-prick
whole blood was fabricated. The industrially scalable dry transfer
process of single-walled carbon nanotubes (SWCNTs) and screen printing
of silver were combined to produce integrated electrochemical test
strips. Nafion coating stabilized the potential of the Ag reference
electrode and enabled the selective detection in spiked plasma as
well as in whole blood samples. The test strips were able to detect
acetaminophen in small 40 μL samples with a detection limit
of 0.8 μM and a wide linear range from 1 μM to 2 mM, well
within the required clinical range. After a simple 1:1 dilution of
plasma and whole blood, a quantitative detection with good recoveries
of 79% in plasma and 74% in whole blood was achieved. These results
strongly indicate that these electrodes can be used directly to determine
the unbound acetaminophen fraction without the need for any additional
steps. The developed test strip shows promise as a rapid and simple
POC quantitative acetaminophen assay.
Collapse
Affiliation(s)
- Niklas Wester
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | | | - Ilkka Varjos
- Canatu Oy, Tiilenlyöjänkuja 9, 01720 Vantaa, Finland
| | - Antti Peltonen
- Aalto-NanoFab, Micronova, Aalto University, Tietotie 3, 02150 Espoo, Finland
| | - Eija Kalso
- Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, 00029 HUS Helsinki, Finland
| | - Tuomas Lilius
- Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00290 Helsinki, Finland
| | - Tomi Laurila
- Department of Electrical Engineering and Automation, Aalto University, Tietotie 3, 02150 Espoo, Finland
| | - Jari Koskinen
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
19
|
Mynttinen E, Wester N, Lilius T, Kalso E, Mikladal B, Varjos I, Sainio S, Jiang H, Kauppinen EI, Koskinen J, Laurila T. Electrochemical Detection of Oxycodone and Its Main Metabolites with Nafion-Coated Single-Walled Carbon Nanotube Electrodes. Anal Chem 2020; 92:8218-8227. [PMID: 32412733 PMCID: PMC7735650 DOI: 10.1021/acs.analchem.0c00450] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Oxycodone is a strong opioid
frequently used as an analgesic. Although proven efficacious in the
management of moderate to severe acute pain and cancer pain, use of
oxycodone imposes a risk of adverse effects such as addiction, overdose,
and death. Fast and accurate determination of oxycodone blood concentration
would enable personalized dosing and monitoring of the analgesic as
well as quick diagnostics of possible overdose in emergency care.
However, in addition to the parent drug, several metabolites are always
present in the blood after a dose of oxycodone, and to date, there
is no electrochemical data available on any of these metabolites.
In this paper, a single-walled carbon nanotube (SWCNT) electrode and
a Nafion-coated SWCNT electrode were used, for the first time, to
study the electrochemical behavior of oxycodone and its two main metabolites,
noroxycodone and oxymorphone. Both electrode types could selectively
detect oxycodone in the presence of noroxycodone and oxymorphone.
However, we have previously shown that addition of a Nafion coating
on top of the SWCNT electrode is essential for direct measurements
in complex biological matrices. Thus, the Nafion/SWCNT electrode was
further characterized and used for measuring clinically relevant concentrations
of oxycodone in buffer solution. The limit of detection for oxycodone
with the Nafion/SWCNT sensor was 85 nM, and the linear range was 0.5–10
μM in buffer solution. This study shows that the fabricated
Nafion/SWCNT sensor has potential to be applied in clinical concentration
measurements.
Collapse
Affiliation(s)
- Elsi Mynttinen
- Department of Electrical Engineering and Automation, Aalto University, Tietotie 3, 02150 Espoo, Finland
| | - Niklas Wester
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Tuomas Lilius
- Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00290 Helsinki, Finland
| | - Eija Kalso
- Department of Pharmacology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.,Pain Clinic, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2A, 00290 Helsinki, Finland
| | | | - Ilkka Varjos
- Canatu Oy, Tiilenlyöjänkuja 9, 01720 Vantaa, Finland
| | - Sami Sainio
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Hua Jiang
- Department of Applied Physics, Aalto University, 02150 Espoo, Finland
| | - Esko I Kauppinen
- Department of Applied Physics, Aalto University, 02150 Espoo, Finland
| | - Jari Koskinen
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Tomi Laurila
- Department of Electrical Engineering and Automation, Aalto University, Tietotie 3, 02150 Espoo, Finland
| |
Collapse
|
20
|
Dehdashti A, Babaei A. Designing and characterization of a novel sensing platform based on Pt doped NiO/MWCNTs nanocomposite for enhanced electrochemical determination of epinephrine and tramadol simultaneously. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Dehdashti A, Babaei A. Highly Sensitive Electrochemical Sensor Based on Pt Doped NiO Nanoparticles/MWCNTs Nanocomposite Modified Electrode for Simultaneous Sensing of Piroxicam and Amlodipine. ELECTROANAL 2020. [DOI: 10.1002/elan.201900580] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Aliyeh Dehdashti
- Department of Chemistry, Faculty of Science Arak University Arak, I.R. IRAN
| | - Ali Babaei
- Department of Chemistry, Faculty of Science Arak University Arak, I.R. IRAN
- Institute of Nanosciences & Nanotechnology Arak University 38156-8-8349 Arak, I.R. IRAN
| |
Collapse
|
22
|
Sainio S, Leppänen E, Mynttinen E, Palomäki T, Wester N, Etula J, Isoaho N, Peltola E, Koehne J, Meyyappan M, Koskinen J, Laurila T. Integrating Carbon Nanomaterials with Metals for Bio-sensing Applications. Mol Neurobiol 2020; 57:179-190. [PMID: 31520316 PMCID: PMC6968979 DOI: 10.1007/s12035-019-01767-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Age structure in most developed countries is changing fast as the average lifespan is increasing significantly, calling for solutions to provide improved treatments for age-related neurological diseases and disorders. In order to address these problems, a reliable way of recording information about neurotransmitters from in vitro and in vivo applications is needed to better understand neurological diseases and disorders as well as currently used treatments. Likewise, recent developments in medicine, especially with the opioid crisis, are demanding a swift move to personalized medicine to administer patient needs rather than population-wide averages. In order to enable the so-called personalized medicine, it is necessary to be able to do measurements in vivo and in real time. These actions require sensitive and selective detection of different analytes from very demanding environments. Current state-of-the-art materials are unable to provide sensitive and selective detection of neurotransmitters as well as the required time resolution needed for drug molecules at a reasonable cost. To meet these challenges, we have utilized different metals to grow carbon nanomaterials and applied them for sensing applications showing that there are clear differences in their electrochemical properties based on the selected catalyst metal. Additionally, we have combined atomistic simulations to support optimizing materials for experiments and to gain further understanding of the atomistic level reactions between different analytes and the sensor surface. With carbon nanostructures grown from Ni and Al + Co + Fe hybrid, we can detect dopamine, ascorbic acid, and uric acid simultaneously. On the other hand, nanostructures grown from platinum provide a feasible platform for detection of H2O2 making them suitable candidates for enzymatic biosensors for detection of glutamate, for example. Tetrahedral amorphous carbon electrodes have an ability to detect morphine, paracetamol, tramadol, and O-desmethyltramadol. With carbon nanomaterial-based sensors, it is possible to reach metal-like properties in sensing applications using only a fraction of the metal as seed for the material growth. We have also seen that by using nanodiamonds as growth catalyst for carbon nanofibers, it is not possible to detect dopamine and ascorbic acid simultaneously, although the morphology of the resulting nanofibers is similar to the ones grown using Ni. This further indicates the importance of the metal selection for specific applications. However, Ni as a continuous layer or as separate islands does not provide adequate performance. Thus, it appears that metal nanoparticles combined with fiber-like morphology are needed for optimized sensor performance for neurotransmitter detection. This opens up a new research approach of application-specific nanomaterials, where carefully selected metals are integrated with carbon nanomaterials to match the needs of the sensing application in question.
Collapse
Affiliation(s)
- Sami Sainio
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Department of Chemistry and Materials Science, School of Chemical Technology, Aalto University, 02150, Espoo, Finland
| | - Elli Leppänen
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150, Espoo, Finland
| | - Elsi Mynttinen
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150, Espoo, Finland
| | - Tommi Palomäki
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150, Espoo, Finland
| | - Niklas Wester
- Department of Chemistry and Materials Science, School of Chemical Technology, Aalto University, 02150, Espoo, Finland
| | - Jarkko Etula
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150, Espoo, Finland
| | - Noora Isoaho
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150, Espoo, Finland
| | - Emilia Peltola
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150, Espoo, Finland
| | - Jessica Koehne
- Center for Nanotechnology, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - M Meyyappan
- Center for Nanotechnology, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Jari Koskinen
- Department of Chemistry and Materials Science, School of Chemical Technology, Aalto University, 02150, Espoo, Finland
| | - Tomi Laurila
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150, Espoo, Finland.
| |
Collapse
|
23
|
Wester N, Mynttinen E, Etula J, Lilius T, Kalso E, Kauppinen EI, Laurila T, Koskinen J. Simultaneous Detection of Morphine and Codeine in the Presence of Ascorbic Acid and Uric Acid and in Human Plasma at Nafion Single-Walled Carbon Nanotube Thin-Film Electrode. ACS OMEGA 2019; 4:17726-17734. [PMID: 31681878 PMCID: PMC6822113 DOI: 10.1021/acsomega.9b02147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/02/2019] [Indexed: 05/21/2023]
Abstract
In clinical settings, the dosing and differential diagnosis of the poisoning of morphine (MO) and codeine (CO) is challenging due to interindividual variations in metabolism. However, direct electrochemical detection of these analytes from biological matrices is inherently challenging due to interference from large concentrations of anions, such as ascorbic acid (AA) and uric acid (UA), as well as fouling of the electrode by proteins. In this work, a disposable Nafion-coated single-walled carbon nanotube network (SWCNT) electrode was developed. We show facile electron transfer and efficient charge separation between the interfering anions and positively charged MO and CO, as well as significantly reduced matrix effect in human plasma. The Nafion coating alters the voltammetric response of MO and CO, enabling simultaneous detection. With this SWCNT/Nafion electrode, two linear ranges of 0.05-1 and 1-10 μM were found for MO and one linear range of 0.1-50 μM for CO. Moreover, the selective and simultaneous detection of MO and CO was achieved in large excess of AA and UA, as well as, for the first time, in unprocessed human plasma. The favorable properties of this electrode enabled measurements in plasma with only mild dilution and without the precipitation of proteins.
Collapse
Affiliation(s)
- Niklas Wester
- Department
of Chemistry and Materials Science, Aalto
University, Kemistintie 1, 02150 Espoo, Finland
- E-mail:
| | - Elsi Mynttinen
- Department
of Electrical Engineering and Automation, Aalto University, Tietotie 3, 02150 Espoo, Finland
| | - Jarkko Etula
- Department
of Chemistry and Materials Science, Aalto
University, Kemistintie 1, 02150 Espoo, Finland
| | - Tuomas Lilius
- Department
of Pharmacology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Department
of Clinical Pharmacology, University of
Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00290 Helsinki, Finland
| | - Eija Kalso
- Department
of Pharmacology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Pain
Clinic, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2A, 00290 Helsinki, Finland
| | - Esko I. Kauppinen
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Tomi Laurila
- Department
of Electrical Engineering and Automation, Aalto University, Tietotie 3, 02150 Espoo, Finland
| | - Jari Koskinen
- Department
of Chemistry and Materials Science, Aalto
University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
24
|
Effect of thickness and additional elements on the filtering properties of a thin Nafion layer. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Atta NF, Galal A, Hassan SH. Ultrasensitive determination of nalbuphine and tramadol narcotic analgesic drugs for postoperative pain relief using nano-cobalt oxide/ionic liquid crystal/carbon nanotubes-based electrochemical sensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|