1
|
Yu S, Liu C, Sui M, Wei H, Cheng H, Chen Y, Zhu Y, Wang H, Ma P, Wang L, Li T. Magnetic-acoustic actuated spinous microrobot for enhanced degradation of organic pollutants. ULTRASONICS SONOCHEMISTRY 2024; 102:106714. [PMID: 38113586 PMCID: PMC10772293 DOI: 10.1016/j.ultsonch.2023.106714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
A growing interest in the development of efficient strategies for the removal of organic pollutants from polluted water is emerging. As such, artificial micro/nano machines performing excellent water purification tasks have recently attracted more research attention of scientists. Hereby a spinous Fe3O4@PPy microrobot is presented that towards an efficient organic pollutant removal by enhancing Fenton-like reaction. The microrobot is fabricated by wrapping polypyrrole (PPy) on a spiny magnetic template prepared from sunflowers pollen. Modulating the sound pressure and frequency of the ultrasonic field enables the Fe3O4@PPy microrobot to present multimode motion, such as violent eruption-like motion caused by local cavitation (ELM), march-like unific motion (MLM), and typhoon-like rotation toward the center gathered motion (TLM). This multimode motion achieves the sufficient locomotion of microrobots in three-dimensional space and effective contact with organic pollutants in polluted water. Furthermore, a 5.2-fold increase in the degradation rate of methylene blue has been realized using Fe3O4@PPy microrobots under low-concentration hydrogen peroxide conditions. Also, the magnetically controlled recovery of microrobots from water after the completion of the degradation task has been demonstrated. The magnetic-acoustic actuated spinous microrobot can be extrapolated to other catalytic microrobot, developing a new strategy for an easier implementation and recovery of microrobot in real applications of water purification.
Collapse
Affiliation(s)
- Shimin Yu
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Chenlu Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Haiqiang Wei
- The Twelfth Oil Production Plant of Changqing Oilfield Company, Qingyang 745400, China
| | - Haoyuan Cheng
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Yujing Chen
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Penglei Ma
- College of Engineering, Ocean University of China, Qingdao 266100, China.
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute of HIT, Chongqing 401151, China.
| |
Collapse
|
2
|
Orimolade BO, Oladipo AO, Idris AO, Usisipho F, Azizi S, Maaza M, Lebelo SL, Mamba BB. Advancements in electrochemical technologies for the removal of fluoroquinolone antibiotics in wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163522. [PMID: 37068672 DOI: 10.1016/j.scitotenv.2023.163522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
In recent times, the need to make water safer and cleaner through the elimination of recalcitrant pharmaceutical residues has been the aim of many studies. Fluoroquinolone antibiotics such as ciprofloxacin, norfloxacin, enrofloxacin, and levofloxacin are among the commonly detected pharmaceuticals in wastewater. Since the presence of these pharmaceuticals in water bodies poses serious risks to living organisms, it is vital to adopt effective wastewater treatment techniques for their complete removal. Electrochemical technologies such as photoelectrocatalysis, electro-Fenton, electrocoagulation, and electrochemical oxidation have been established as techniques capable of the complete removal of organics including pharmaceuticals from wastewater. Hence, this review presents discussions on the recent progress (literature within 2018-2022) in the applications of common electrochemical processes for the degradation of fluoroquinolone antibiotics from wastewater. The fundamentals of these processes are highlighted while the results obtained using the processes are critically discussed. Furthermore, the inherent advantages and limitations of these processes in the mineralization of fluoroquinolone antibiotics are clearly emphasized. Additionally, appropriate recommendations are made toward improving electrochemical technologies for the complete removal of these pharmaceuticals with minimal energy consumption. Therefore, this review will serve as a bedrock for future researchers concerned with wastewater treatments to make informed decisions in the selection of suitable electrochemical techniques for the removal of pharmaceuticals from wastewater.
Collapse
Affiliation(s)
- Benjamin O Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa.
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Azeez O Idris
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Feleni Usisipho
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa
| |
Collapse
|
3
|
Park YH, Kim D, Hiragond CB, Lee J, Jung JW, Cho CH, In I, In SI. Phase-controlled 1T/2H-MoS2 interaction with reduced TiO2 for highly stable photocatalytic CO2 reduction into CO. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Cui M, Li Q, Bao R, Xia J, Li H. 2D and 3D Nanomaterials for Photoelectrocatalytic Removal of Organic Pollutants from Water. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mengmeng Cui
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Qianxi Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Ruiyu Bao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Jianxin Xia
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| | - Hua Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China) National Ethnic Affairs Commission Beijing 100081 China
- College of Life and Environmental Sciences Minzu University of China Beijing 100081 China
| |
Collapse
|
5
|
Wang Z, Sun Z, Yin H, Liu X, Wang J, Zhao H, Pang CH, Wu T, Li S, Yin Z, Yu XF. Data-Driven Materials Innovation and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104113. [PMID: 35451528 DOI: 10.1002/adma.202104113] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/19/2022] [Indexed: 05/07/2023]
Abstract
Owing to the rapid developments to improve the accuracy and efficiency of both experimental and computational investigative methodologies, the massive amounts of data generated have led the field of materials science into the fourth paradigm of data-driven scientific research. This transition requires the development of authoritative and up-to-date frameworks for data-driven approaches for material innovation. A critical discussion on the current advances in the data-driven discovery of materials with a focus on frameworks, machine-learning algorithms, material-specific databases, descriptors, and targeted applications in the field of inorganic materials is presented. Frameworks for rationalizing data-driven material innovation are described, and a critical review of essential subdisciplines is presented, including: i) advanced data-intensive strategies and machine-learning algorithms; ii) material databases and related tools and platforms for data generation and management; iii) commonly used molecular descriptors used in data-driven processes. Furthermore, an in-depth discussion on the broad applications of material innovation, such as energy conversion and storage, environmental decontamination, flexible electronics, optoelectronics, superconductors, metallic glasses, and magnetic materials, is provided. Finally, how these subdisciplines (with insights into the synergy of materials science, computational tools, and mathematics) support data-driven paradigms is outlined, and the opportunities and challenges in data-driven material innovation are highlighted.
Collapse
Affiliation(s)
- Zhuo Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Zhehao Sun
- Research School of Chemistry, The Australian National University, ACT, 2601, Australia
| | - Hang Yin
- Research School of Chemistry, The Australian National University, ACT, 2601, Australia
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-Gu, Suwon, 16419, Republic of Korea
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
- Municipal Key Laboratory of Clean Energy Conversion Technologies, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Tao Wu
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
- New Materials Institute, University of Nottingham, Ningbo, China, Ningbo, 315100, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, ACT, 2601, Australia
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
6
|
Saya L, Malik V, Gautam D, Gambhir G, Singh WR, Hooda S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152529. [PMID: 34953830 DOI: 10.1016/j.scitotenv.2021.152529] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Among various classes of antibiotics, fluoroquinolones, especially Levofloxacin, are being administered on a large scale for numerous purposes. Being highly stable to be completely metabolized, residual quantities of Levofloxacin get accumulated into the food chain proving a great global threat for aquatic as well as terrestrial ecosystems. Various removal techniques including both conventional and advanced methods have been reported for this purpose. This review is a novel attempt to make a critical analysis of the recent advances made exclusively toward the sequestration of Levofloxacin from wastewater through an extensive literature survey (2015-2021). Adsorption and advanced oxidation processes especially photocatalytic degradation are the most tested techniques in which assorted nanomaterials play a significant role. Several photocatalysts exhibited up to 100% degradation of LEV which makes photocatalytic degradation the best method among other tested methods. However, the degraded products need to be further monitored in terms of their toxicity. Biological degradation may prove to be the most environment-friendly with the least toxicity, unfortunately, not much research is reported in the field. With these key findings and knowledge gaps, authors suggest the scope of hybrid techniques, which have been experimented on other antibiotics. These can potentially minimize the disadvantages of the individual techniques concurrently improving the efficiency of LEV removal. Besides, techniques like column adsorption, membrane treatment, and ozonation, being least reported, reserve good perspectives for future research. With these implications, the review will certainly serve as a breakthrough for researchers working in this field to aid their future findings.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Dhaula Kuan, New Delhi 110021, India; Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India; Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Vipin Malik
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Drashya Gautam
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India.
| | - Sunita Hooda
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
7
|
Li S, Liu C, Liu H, Lv W, Liu G. Effective stabilization of atomic hydrogen by Pd nanoparticles for rapid hexavalent chromium reduction and synchronous bisphenol A oxidation during the photoelectrocatalytic process. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126974. [PMID: 34449332 DOI: 10.1016/j.jhazmat.2021.126974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Atomic hydrogen (H*) plays a vital role in the synchronous redox of metallic ions and organic molecules. However, H* is extremely unstable as it is easily converted to hydrogen. Herein, we designed a novel strategy for the effective stabilization of H* to enhance its utility. The synthesized Pd nanoparticles grown on the defective MoS2 (DMS) of TiO2 nanowire arrays (TNA) (TNA/DMS/Pd) photocathode exhibited rapid Cr(VI) reduction (~95% in 10 min) and bisphenol A (BPA) oxidation (~97% in 30 min), with the kinetic constants almost 24- and 6-fold higher than those of the TNA photocathode, respectively. This superior performances could be attributed to: (i) the generated interface heterojunctions between TNA and DMS boosted the separation efficiencies of photogenerated electrons, thereby supplying abundant valance electrons to lower the overpotential to create a suitable microenvironment for H* generation; (ii) the stabilization of H* by Pd nanoparticles resulted in a significant increase in the yield of hydroxyl radical (•OH). This research provides a new strategy for the effective utilization of H* toward rapid reduction of heavy metals and synchronous oxidation of the refractory organics.
Collapse
Affiliation(s)
- Shanpeng Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunlei Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Liu J, Li Z, Wang M, Jin C, Kang J, Tang Y, Li S. Eu2O3/Co3O4 nanosheets for levofloxacin removal via peroxymonosulfate activation: Performance, mechanism and degradation pathway. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Xu Z, Lu J, Zheng X, Chen B, Luo Y, Tahir MN, Huang B, Xia X, Pan X. A critical review on the applications and potential risks of emerging MoS 2 nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123057. [PMID: 32521321 DOI: 10.1016/j.jhazmat.2020.123057] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide (MoS2) nanomaterials have been widely used in various fields such as energy store and transformation, environment protection, and biomedicine due to their unique physicochemical properties. Unfortunately, such large-scale production and use of MoS2 nanomaterials would inevitably release into the environmental system and then potentially increase the risks of wildlife/ecosystem and human beings as well. In this review, we first introduce the physicochemichemical properties, synthetic methods and environmental behaviors of MoS2 nanomaterials and their typical functionalized materials, then summarize their environmental and biomedical applications, next assess their potential health risks, covering in vivo and in vitro studies, along with the underlying toxicological mechanisms, and last point out some special phenomena about the balance between applications and potential risks. This review aims to provide guidance for harm predication induced by MoS2 nanomaterials and to suggest prevention measures based on the recent research progress of MoS2' applications and exerting toxicological data.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China; Faculty of Life Science & Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jichang Lu
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xianyao Zheng
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Chen
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongming Luo
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Muhammad Nauman Tahir
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueshan Xia
- Faculty of Life Science & Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
10
|
Abukhadra MR, Mohamed AS, El-Sherbeeny AM, Soliman ATA. Enhanced Adsorption of Toxic and Biologically Active Levofloxacin Residuals from Wastewater Using Clay Nanotubes as a Novel Fixed Bed: Column Performance and Optimization. ACS OMEGA 2020; 5:26195-26205. [PMID: 33073145 PMCID: PMC7558072 DOI: 10.1021/acsomega.0c03785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 05/02/2023]
Abstract
Kaolinite nanotube particles (KNTs) were synthesized by a chemical exfoliation and scrolling process in the existence of sonication waves. The KNT product was identified as a mesoporous material (12 nm in pore diameter) with high surface area (105 m2/g) and promising adsorption affinity for the levofloxacin antibiotic (LVOX) residuals in wastewater. The KNT particles were used as a fixed bed in the continuous adsorption column system for LVOX considering the essential variables. The investigation of the KNT fixed bed in a continuous column for 1800 min verified its suitability to reduce the LVOX content in 9 L of polluted solutions by 80.4%. This was recognized after using the KNT bed of 4 cm in height, a flow rate of 5 mL/min, a pH value of 8, a total flow interval of 1800 min, and an LVOX concentration of 10 mg/L. The regeneration study of the bed declared effective recyclability properties for the KNT particles in the LVOX adsorption column system. The dynamic properties of the KNT bed-based column system were explained based on Thomas, Adams-Bohart, and the Yoon-Nelson kinetic models. The LVOX adsorption reaction by KNTs follows Langmuir behavior with homogeneous and monolayer uptake form. The Gaussian energy (2.05 kJ/mol) and the thermodynamic parameters emphasized physical, spontaneous, and exothermic adsorption reactions for LVOX by KNTs.
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef 62511, Egypt
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City 62511, Egypt
| | - Aya S. Mohamed
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City 62511, Egypt
- Department
of Environment and Industrial Development, Faculty of Postgraduate
Studies for Advanced Sciences, Beni-Suef
University, Beni Suef 62511, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ahmed Tawhid Ahmed Soliman
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
11
|
Abukhadra MR, Helmy A, Sharaf MF, El-Meligy MA, Ahmed Soliman AT. Instantaneous oxidation of levofloxacin as toxic pharmaceutical residuals in water using clay nanotubes decorated by ZnO (ZnO/KNTs) as a novel photocatalyst under visible light source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111019. [PMID: 32778301 DOI: 10.1016/j.jenvman.2020.111019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Kaolinite nanotubes were synthesized by a simple scrolling process and decorated by ZnO nanoparticles as a novel nanocomposite (ZnO/KNTs). The synthetic ZnO/KNTs composite was characterized as an effective photocatalyst in the oxidation of levofloxacin pharmaceutical residuals in the water resources. The composite displays a surface area of 95.4 m2/g, average pore diameter of 5.8 nm, and bandgap energy of 2.12 eV. It is of high catalytic activity in the oxidation of levofloxacin in the presence of visible light source. The complete oxidation for 10 mg/L of levofloxacin was recognized after 55 min, 45 min, and 30 min with applying 30 mg, 40 mg, and 50 mg of ZnO/KNTs as catalyst dosage, respectively. Additionally, it achieved complete oxidation for 20 mg/L and 30 mg/L of levofloxacin after 45 min and 75 min, respectively using 50 mg as catalyst dosage. The degradation efficiency was confirmed by detecting the residual TOC after the treatment tests and the formed intermediate compounds were identified to suggest the degradation pathways. In addition to the oxidation pathway, the mechanism was evaluated based on the active trapping tests that proved the dominance of hydroxyl radicals as the essential active species. Finally, the ZnO/KNTs composite is of promising recyclability properties and achieved better results than several studied photocatalysts in literature.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt; Geology Department, Faculty of Science, Beni-Suef University, BeniSuef City, Egypt.
| | - Ashraf Helmy
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt; Chemistry Department, Faculty of Science, Beni-Suef University, BeniSuef City, Egypt
| | - Mohamed F Sharaf
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Mohammed A El-Meligy
- Advanced Manufacturing Institute, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Ahmed Tawhid Ahmed Soliman
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
12
|
Enhanced decontamination of levofloxacin as toxic pharmaceutical residuals from water using CaO/MgO nanorods as a promising adsorbent. Sci Rep 2020; 10:14828. [PMID: 32908234 PMCID: PMC7481205 DOI: 10.1038/s41598-020-71951-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/24/2020] [Indexed: 11/09/2022] Open
Abstract
Novel MgO/CaO nanocomposite (MgO/CaO NRs) was synthesized by the hydrothermal method using diatomite porous frustules as a substrate under the microwave irradiation. The composite appeared as well crystalline rod-like nanoparticles with 52.3 nm as average particle size and 112.8 m2/g as BET surface area. The synthetic MgO/CaO NRs were addressed as a novel adsorbent for promising removal of levofloxacin (LVX) as pharmaceutical residuals. The adsorption studies revealed effective uptake of levofloxacin by MgO/CaO NRs with theoretical qmax of 106.7 mg/g and the equilibrium time of 720 min considering the best pH value (pH 7). The equilibrium studies highly fitted with the Langmuir model of monolayer adsorption considering the values of Chi-squared (χ2) and determination coefficient. The estimated adsorption energy from Dubinin–Radushkevich (0.2 kJ/mol) signifies physisorption mechanisms that might be coulombic attractive forces considering the kinetic studies. The thermodynamic addressing for the reactions verified their spontaneous and exothermic nature within a temperature range from 303 to 333 K. Additionally, the prepared MgO/CaO NRs show significant recyclability properties to be used in realistic remediation process and its uptake capacity is higher than several studied adsorbents in literature.
Collapse
|
13
|
Song Y, Qiao J, Li W, Ma C, Chen S, Li H, Hong C. Bimetallic PtCu nanoparticles supported on molybdenum disulfide-functionalized graphitic carbon nitride for the detection of carcinoembryonic antigen. Mikrochim Acta 2020; 187:538. [PMID: 32876849 DOI: 10.1007/s00604-020-04498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
A molybdenum disulfide based graphite phase carbon nitride (MoS2/g-C3N4) which is supported by a platinum-copper nanoparticle (PtCu) Z-type catalyst was created in this study. The catalyst exploits optoelectronic synergistic effect with large surface area, good catalysis, and biocompatibility to amplify the signal. The electrode impedance of the synthesized MoS2/g-C3N4-PtCu was reduced five times in visible light compared with dark conditions, thereby improving the detection of carcinoembryonic antigen (CEA). At a voltage of - 0.4 V, the immunoprobe constructed with this material is used for CEA detection. A linear relationship between 100 fg mL-1 and 80 ng mL-1 concentrations was achieved with a minimum detection limit of 33 fg mL-1 (S/N = 3). The recovery rate was 103-104%, and the relative standard deviation was 2.9-3.8%. This implies that the sandwich immunosensors have good reproducibility, selectivity, and stability and can be used in various applications. Graphical Abstract.
Collapse
Affiliation(s)
- Yiju Song
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jingwen Qiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Wenjun Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Chaoyun Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Siyu Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Hongling Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
14
|
Dondapati JS, Chen A. Quantitative structure-property relationship of the photoelectrochemical oxidation of phenolic pollutants at modified nanoporous titanium oxide using supervised machine learning. Phys Chem Chem Phys 2020; 22:8878-8888. [PMID: 32286586 DOI: 10.1039/d0cp01518k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here we report on an advanced photoelectrochemical (PEC) oxidation of 22 phenolic pollutants based on modified nanoporous TiO2, which was directly grown on a titanium substrate electrochemically. Their degradation rate constants were experimentally determined and their physicochemical properties were computaionally calculated. The quantitative structure-property relationship (QSPR) was elucidated by employing multiple linear regression (MLR) method. A supervised machine learning approach was employed to build QSPR models. The high predictive abilities of the QSPR model were validated via leave-one-out (LOO) method and a strict regimen of statistical validation tests. The significant descriptors identified in the QSPR Model for the phenolic compounds were also assessed using a typical dye pollutant Rhodamine B, further confirming the high effectiveness and predictability of the optimized model. Our study has shown that the integrated effect of the structural, hydrophobic and topological properties along with electronic property should be considered in order to design an efficient PEC catalytic approach for environmental applications.
Collapse
Affiliation(s)
- Jesse S Dondapati
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Aicheng Chen
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
15
|
Zeng L, Li X, Chen S, Wen J, Rahmati F, van der Zalm J, Chen A. Highly boosted gas diffusion for enhanced electrocatalytic reduction of N 2 to NH 3 on 3D hollow Co-MoS 2 nanostructures. NANOSCALE 2020; 12:6029-6036. [PMID: 32125326 DOI: 10.1039/c9nr09624h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transition metal chalcogenide MoS2 catalysts are highly selective for the electrochemical reduction of dinitrogen (N2) to ammonia (NH3) in aqueous electrolytes. However, due to the low solubility of N2 in water, limited N2 diffusion and mass transport have heavily restricted the yield and the faradaic efficiency (FE). Here, we have demonstrated a highly efficacious assembled gas diffusion cathode with hollow Co-MoS2/N@C nanostructures to significantly improve the electrochemical reduction of N2 to NH3. Our results revealed that the synthesized Co-MoS2 heterojunctions with abundant graphitic N groups exhibited a superb NH3 yield of 129.93 μg h-1 mgcat-1 and a high faradaic efficiency of 11.21% at -0.4 V vs. the reversible hydrogen electrode (RHE), as well as excellent selectivity and stability. The strategy described in this study offers new inspiration to design high-performance electrocatalyst assemblies for the sustainable environmental and energy applications.
Collapse
Affiliation(s)
- Libin Zeng
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang X, Gao Y, Nengzi LC, Li B, Gou J, Cheng X. Synthesis of SnS/TiO2 nano-tube arrays photoelectrode and its high photoelectrocatalytic performance for elimination of 2,4,6-trichlorophenol. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Zeng L, Li X, Zhao Q, Fan S, Zhang M, Yin Z, Chen A. Boosting interfacial charge transfer and electricity generation for levofloxacin elimination in a self-driven bio-driven photoelectrocatalytic system. NANOSCALE 2019; 11:22042-22053. [PMID: 31720647 DOI: 10.1039/c9nr05520g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, molybdenum disulfide (MoS2) has stimulated significant research interest as a promising electrode candidate in solar cells and energy conservation fields. Unfortunately, the short lower electron/hole migration lifetimes and easy agglomeration hamper its wide practical applications to some extent. Herein, interface engineering coupled with a bio-assisted photoelectrochemical (PEC) strategy is presented to construct a 0D MoS2 quantum dot (QD)/1D TiO2 nanotube electrode for pollutant elimination. Aimed at accelerating charge transfer over the 0D/1D composite interface, three types of coupling PEC models were developed to optimize the catalytic performance. The single chamber microbial fuel cell (SCMFC)-PEC integrated system was found to be the best alternative for levofloxacin (LEV) elimination (0.029 min-1), and the sequential SCMFC-PEC further realized the whole system self-running independently. In addition, the interfacial electron migration and LEV degradation pathways were thoroughly investigated by LC/TOF/MS coupled with density functional theory (DFT) calculations to clearly elucidate the electron transfer paths, LEV-attacked sites and mineralization pathways in a joint sequential SCMFC-PEC system. As such, the constructed self-recycling system provides a new platform for bio-photo-electrochemical utilization, which could exhibit promising potential in environmental purification.
Collapse
Affiliation(s)
- Libin Zeng
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Construction of ternary Ag/AgCl/NH2-UiO-66 hybridized heterojunction for effective photocatalytic hexavalent chromium reduction. J Colloid Interface Sci 2019; 555:342-351. [DOI: 10.1016/j.jcis.2019.07.103] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023]
|
19
|
Zeng L, Chen S, van der Zalm J, Li X, Chen A. Sulfur vacancy-rich N-doped MoS2 nanoflowers for highly boosting electrocatalytic N2 fixation to NH3 under ambient conditions. Chem Commun (Camb) 2019; 55:7386-7389. [DOI: 10.1039/c9cc02607j] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sulfur vacancy-rich N-doped MoS2 nanoflowers act as highly effective electrochemical catalysts for efficient nitrogen reduction.
Collapse
Affiliation(s)
- Libin Zeng
- Electrochemical Technology Center
- Department of Chemistry
- University of Guelph
- Guelph
- Canada
| | - Shuai Chen
- Electrochemical Technology Center
- Department of Chemistry
- University of Guelph
- Guelph
- Canada
| | - Joshua van der Zalm
- Electrochemical Technology Center
- Department of Chemistry
- University of Guelph
- Guelph
- Canada
| | - Xinyong Li
- Electrochemical Technology Center
- Department of Chemistry
- University of Guelph
- Guelph
- Canada
| | - Aicheng Chen
- Electrochemical Technology Center
- Department of Chemistry
- University of Guelph
- Guelph
- Canada
| |
Collapse
|