1
|
Moradi S, Nargesi Azam F, Abdollahi H, Rajabifar N, Rostami A, Guzman P, Zarrintaj P, Davachi SM. Graphene-Based Polymeric Microneedles for Biomedical Applications: A Comprehensive Review. ACS APPLIED BIO MATERIALS 2025; 8:1835-1861. [PMID: 39927634 PMCID: PMC11921037 DOI: 10.1021/acsabm.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Transdermal drug delivery presents a promising noninvasive approach, bypassing first-pass metabolism and gastrointestinal degradation. However, the stratum corneum (SC) barrier limits drug absorption, necessitating the development of effective delivery systems. Microneedles, particularly polymer-based ones, offer a solution by penetrating the SC while avoiding critical nerves and capillaries. These microneedles are biodegradable, nontoxic, and easily manufacturable, making them a highly attractive platform for transdermal drug delivery. However, their clinical application remains limited due to suboptimal therapeutic efficacy and slow drug release rates. Recent advancements have introduced the incorporation of nanodrugs, such as nanoparticles and encapsulated drugs, into microneedles to enhance drug delivery efficiency. Among the materials explored, graphene and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), have garnered significant attention. Their exceptional mechanical strength, electrical conductivity, and antibacterial properties not only improve the mechanical performance of microneedles but also enhance drug release rates and biocompatibility. This review synthesizes the current state of microneedle technologies, focusing on the materials, fabrication techniques, and performance challenges. It particularly examines the potential of graphene-based microneedles, comparing them to traditional polymer-based microneedles in terms of drug release efficiency and stability. The review highlights key challenges, such as scalability, biocompatibility, and fabrication complexity, and suggests future research directions to address these issues. The incorporation of graphene quantum dots (GQDs) is identified as a promising avenue for improving drug release profiles, stability, and real-time tracking of drug diffusion. Finally, the review outlines emerging applications, including smart drug delivery systems, biosensing, and real-time monitoring, urging further exploration to unlock the full potential of graphene-enhanced microneedles in clinical settings.
Collapse
Affiliation(s)
- Somayeh Moradi
- Department
of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia 57561-51818, Iran
| | - Faezeh Nargesi Azam
- Polymer
Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-114, Iran
| | - Hossein Abdollahi
- Department
of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia 57561-51818, Iran
| | - Nariman Rajabifar
- Department
of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Amir Rostami
- Department
of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical
Engineering, Persian Gulf University, Bushehr 75169-13817, Iran
| | - Pablo Guzman
- Department
of Biology and Chemistry, Texas A&M
International University, Laredo, Texas 78041, United States
| | - Payam Zarrintaj
- Department
of Biology and Chemistry, Texas A&M
International University, Laredo, Texas 78041, United States
| | - Seyed Mohammad Davachi
- Department
of Biology and Chemistry, Texas A&M
International University, Laredo, Texas 78041, United States
| |
Collapse
|
2
|
Zhang J, Zhang S, Bian X, Yin Y, Huang W, Liu C, Liang X, Li F. High Efficiency Removal Performance of Tetracycline by Magnetic CoFe 2O 4/NaBiO 3 Photocatalytic Synergistic Persulfate Technology. Molecules 2024; 29:4055. [PMID: 39274903 PMCID: PMC11397110 DOI: 10.3390/molecules29174055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The widespread environmental contamination resulting from the misuse of tetracycline antibiotics (TCs) has garnered significant attention and study by scholars. Photocatalytic technology is one of the environmentally friendly advanced oxidation processes (AOPs) that can effectively solve the problem of residue of TCs in the water environment. This study involved the synthesis of the heterogeneous magnetic photocatalytic material of CoFe2O4/NaBiO3 via the solvothermal method, and it was characterized using different characterization techniques. Then, the photocatalytic system under visible light (Vis) was coupled with peroxymonosulfate (PMS) to explore the performance and mechanism of degradation of tetracycline hydrochloride (TCH) in the wastewater. The characterization results revealed that CoFe2O4/NaBiO3 effectively alleviated the agglomeration phenomenon of CoFe2O4 particles, increased the specific surface area, effectively narrowed the band gap, expanded the visible light absorption spectrum, and inhibited recombination of photogenerated electron-hole pairs. In the Vis+CoFe2O4/NaBiO3+PMS system, CoFe2O4/NaBiO3 effectively activated PMS to produce hydroxyl radicals (·OH) and sulfate radicals (SO4-). Under the conditions of a TCH concentration of 10 mg/L-1, a catalyst concentration of 1 g/L-1 and a PMS concentration of 100 mg/L-1, the degradation efficiency of TCH reached 94% after 100 min illumination. The degradation of TCH was enhanced with the increase in the CoFe2O4/NaBiO3 and PMS dosage. The solution pH and organic matter had a significant impact on TCH degradation. Notably, the TCH degradation efficiency decreased inversely with increasing values of these parameters. The quenching experiments indicated that the free radicals contributing to the Vis+CoFe2O4/NaBiO3+PMS system were ·OH followed by SO4-, hole (h+), and the superoxide radical (O2-). The main mechanism of PMS was based on the cycle of Co3+ and Co2+, as well as Fe3+ and Fe2+. The cyclic tests and characterization by XRD and FT-IR revealed that CoFe2O4/NaBiO3 had good degradation stability. The experimental findings can serve as a reference for the complete removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Juanxiang Zhang
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| | - Shengnan Zhang
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| | - Xiuqi Bian
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
- College of Architecture Engineering, Shandong Vocational and Technical University of Engineering, Jinan 250200, China
| | - Yaoshan Yin
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| | - Weixiong Huang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 0926, New Zealand
| | - Xinqiang Liang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| |
Collapse
|
3
|
Yang HY, Wei JJ, Zheng JY, Ai QY, Wang AJ, Feng JJ. Integration of CuS/ZnIn 2S 4 flower-like heterojunctions and (MnCo)Fe 2O 4 nanozyme for signal amplification and their application to ultrasensitive PEC aptasensing of cancer biomarker. Talanta 2023; 260:124631. [PMID: 37163924 DOI: 10.1016/j.talanta.2023.124631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Vascular endothelial growth factor 165 (VEGF165) is a crucial regulator of angiogenesis and works as a major protein biomarker of cancer metastasis. Therefore, its quantitative detection is pivotal in clinic. In this work, CuS/ZnIn2S4 flower-like heterojunctions had strong and stable photocurrents, which behaved as photoactive material to construct a photoelectrochemical (PEC) aptasensor for detecting VEGF165, combined by home-prepared (MnCo)Fe2O4 nanozyme-mediated signal amplification. The interfacial photo-induced electron transfer mechanism was chiefly discussed by UV-vis diffuse reflectance spectroscopy in details. Specifically, the (MnCo)Fe2O4 modified VEGF165 aptamer was released from the PEC aptasensing platform for its highly specific affinity to target VEGF165, which terminated the color precipitation reaction, ultimately recovering the PEC signals. The developed sensor displayed a wider linear range from 1 × 10-2 to 1 × 104 pg mL-1 with a smaller limit of detection (LOD) of 0.1 fg mL-1. This study provides some valuable insights for building other ultrasensitive aptasensors for clinical assays of cancer biomarkers in practice.
Collapse
Affiliation(s)
- Hong-Ying Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing-Jing Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jia-Ying Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Qing-Ying Ai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
4
|
Wang W, Liu X, Jing J, Mu J, Wang R, Du C, Su Y. Photoelectrocatalytic peroxymonosulfate activation over CoFe2O4-BiVO4 photoanode for environmental purification: Unveiling of multi-active sites, interfacial engineering and degradation pathways. J Colloid Interface Sci 2023; 644:519-532. [PMID: 37032247 DOI: 10.1016/j.jcis.2023.03.202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
This work reported on the development of CoFe2O4-BiVO4 photoanode based photoelectrocatalytic system collaborating with peroxymonosulfate activation for organic contaminants removal. CoFe2O4 layer not only provided active sites for direct peroxymonosulfate activation but also accelerated charge separation process for the enhancement of photocurrent density and photoelectrocatalytic performance. Junction of CoFe2O4 layer on BiVO4 photoanode led to the improvement of photocurrent density to 4.43 mA/cm2 at 1.23 VRHE, which was approximately 4.06 times higher than that of pure BiVO4. Subsequently, the corresponding optimal degradation efficiency toward the tetracycline model contaminant achieved to be 89.1% with total organic carbon removal value of about 43.7% within 60 min. Moreover, the degradation rate constant of CoFe2O4-BiVO4 photoanode in photoelectrocatalytic system was 0.037 min-1, which was about 1.23, 2.64 and 3.70 times higher than the values in photocatalysis, electrocatalysis and PMS only based systems, respectively. In addition, radical scavenging experiments and electron spin resonance spectra indicated a synergy of radical and nonradical coupling process where •OH and 1O2 played vital roles during tetracycline degradation. Plausible photoelectrocatalytic mechanism and degradation pathway were proposed. This work provided an effective strategy to construct peroxymonosulfate assisted photoelectrocatalytic system toward green environmental applications.
Collapse
Affiliation(s)
- Weihong Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xudong Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Jianfang Jing
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Jiarong Mu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ruixi Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Chunfang Du
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yiguo Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
5
|
Zhu P, Zhang S, Liu R, Luo D, Yao H, Zhu T, Bai X. Investigation of an enhanced Z-scheme magnetic recyclable BiVO4/GO/CoFe2O4 photocatalyst with visible-light-driven for highly efficient degradation of antibiotics. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Gao L, Deng J, Li T, Qi K, Zhang J, Yi Q. A facial strategy to efficiently improve catalytic performance of CoFe 2O 4 to peroxymonosulfate. J Environ Sci (China) 2022; 116:1-13. [PMID: 35219407 DOI: 10.1016/j.jes.2021.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 06/14/2023]
Abstract
Cobalt iron spinel (CoFe2O4) has been considered as a good heterogeneous catalysis to peroxymonosulfate (PMS) in the degradation of persistent organic pollutants due to its magnetic properties and good chemical stability. However, its catalytic activity needs to be further improved. Here, a facial strategy, "in-situ substitution", was adopted to modify CoFe2O4 to improve its catalytic performance just by suitably increasing the Co/Fe ratio in synthesis process. Compared with CoFe2O4, the newly synthesized Co1.5Fe1.5O4, could not only significantly improve the degradation efficiency of phenol, from 50.69 to 93.6%, but also exhibited more effective mineralization ability and higher PMS utilization. The activation energy advantage for phenol degradation using Co1.5Fe1.5O4 was only 44.2 kJ/mol, much lower than that with CoFe2O4 (127.3 kJ/mol). A series of related representations of CoFe2O4 and Co1.5Fe1.5O4 were compared to explore the possible reasons for the outstanding catalytic activity of Co1.5Fe1.5O4. Results showed that Co1.5Fe1.5O4 as well represented spinel crystal as CoFe2O4 and the excess cobalt just partially replaced the position of iron without changing the original structure. Co1.5Fe1.5O4 had smaller particle size (8.7 nm), larger specific surface area (126.3 m2/g), which was more favorable for exposure of active sites. Apart from the superior physical properties, more importantly, more reactive centers Co (Ⅱ) and surface hydroxyl compounds generated on Co1.5Fe1.5O4, which might be the major reason. Furthermore, Co1.5Fe1.5O4 behaved good paramagnetism, wide range of pH suitability and strong resistance to salt interference, making it a new prospect in environmental application.
Collapse
Affiliation(s)
- Lili Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jieqiong Deng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tong Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kai Qi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiandong Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qun Yi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
7
|
Wu H, Zhang D, Lei BX, Liu ZQ. Metal Oxide‐Based Photoelectrodes in Photoelectrocatalysis: Advances and Challenges. Chempluschem 2022; 87:e202200097. [DOI: 10.1002/cplu.202200097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Heng Wu
- Hainan Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ding Zhang
- Hainan Normal University School of Chemistry and Chemical Engineering CHINA
| | - Bing-Xin Lei
- Guangxi University for Nationalities School of Materials and Environment CHINA
| | - Zhao-Qing Liu
- Guangzhou University School of Chemistry and Chemical Engineering 230 GuangZhou University City Outer Ring Road 510006 Guangzhou CHINA
| |
Collapse
|
8
|
Oladipo AA, Gazi M. Ternary Ni0.5Zn0.5Fe2O4/carbon nanocomposite as counter electrode for natural dye-sensitized solar cells: Electro-photovoltaic characterizations. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Abstract
We developed cobalt and carbon complex materials as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs) to replace conventional platinum (Pt) CEs. Co12 and Co15, both of which are basic cobalt derivatives, showed good redox potential with a suitable open-circuit voltage (VOC); however, their poor electrical conductivity engendered a low short-circuit current (JSC) and fill factor (FF). Mixing them with carbon black (CB) improved the electrical conductivity of the CE; in particular, JSC and FF were considerably improved. Further improvement was achieved by combining cobalt derivatives and CB through thermal sintering to produce a novel CoCB material as a CE. CoCB had good electrical conductivity and electrocatalytic capability, and this further enhanced both JSC and VOC. The optimized device exhibited a power conversion efficiency (PCE) of 7.44%, which was higher than the value of 7.16% for a device with a conventional Pt CE. The conductivity of CoCB could be further increased by mixing it with PEDOT:PSS, a conducting polymer. The device’s JSC increased to 18.65 mA/cm2, which was considerably higher than the value of 14.24 mA/cm2 for the device with Pt CEs. The results demonstrate the potential of the cobalt and carbon complex as a CE for DSSCs.
Collapse
|
10
|
Qiu J, He D, Wang H, Li W, Sun B, Ma Y, Lu X, Wang C. Morphology-controlled fabrication of NiCo2S4 nanostructures decorating carbon nanofibers as low-cost counter electrode for efficient dye-sensitized solar cells. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Li J, Yun S, Han F, Si Y, Arshad A, Zhang Y, Chidambaram B, Zafar N, Qiao X. Biomass-derived carbon boosted catalytic properties of tungsten-based nanohybrids for accelerating the triiodide reduction in dye-sensitized solar cells. J Colloid Interface Sci 2020; 578:184-194. [PMID: 32526522 DOI: 10.1016/j.jcis.2020.04.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Abstract
Manganese tungstate (MnWO4), zinc tungstate (ZnWO4), and copper tungstate (CuWO4) embedded biomass-derived carbon (MWO-C, ZWO-C, CWO-C) was synthesized by hydrothermal treatment and investigated as counter electrode (CE) catalysts to test electrochemical activity. Biomass-derived carbon was used as the shape controlling agent, which changed the morphology of MWO from spherical to spindle-like. Owing to the synergistic effect between tungsten-based bimetal oxides and biomass-derived carbon, the MWO-C, ZWO-C, and CWO-C catalysts exhibited enhanced electrochemical performance in dye-sensitized solar cells (DSSCs) system. The MWO-C, ZWO-C and CWO-C catalysts in DSSCs showed outstanding power conversion efficiency (PCE) of 7.33%, 7.61%, and 6.52%, respectively, as compared with 7.04% for Pt based devices. Biomass-derived carbon improves the catalytic properties of tungsten-based nanohybrids. The results showed that biomass-derived carbon-enhanced inorganic compound as CE catalysts are promising alternatives to Pt-based CE catalysts for energy conversion devices.
Collapse
Affiliation(s)
- Jingwen Li
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Feng Han
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yiming Si
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Asim Arshad
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yongwei Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Brundha Chidambaram
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Nosheen Zafar
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xinying Qiao
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
12
|
Oh WC, Cho KY, Jung CH, Areerob Y. Hybrid of Graphene based on quaternary Cu 2ZnNiSe 4 -WO 3 Nanorods for Counter Electrode in Dye-sensitized Solar Cell Application. Sci Rep 2020; 10:4738. [PMID: 32179805 PMCID: PMC7075898 DOI: 10.1038/s41598-020-61363-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/25/2020] [Indexed: 02/01/2023] Open
Abstract
A novel nanohybrid of graphene-based Cu2ZnNiSe4 with WO3 nanorods (G-CZNS@W) was successfully synthesized via a simple hydrothermal method to use as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The characterization technique confirmed the structural and morphologies of the G-CZNS@W nanohybrid, which could show rapid electrons transfer pathway through the WO3 nanorods. Moreover, the as-fabricated G-CZNS@W nanohybrid exhibited synergetic effect between G-CZNS and a WO3 nanorod, which could affect the electrocatalytic activity towards triiodide reaction. The nanohybrid exhibits an excellent photovoltaic performance of 12.16%, which is higher than that of the standard Pt electrode under the same conditions. The G-CZNS@W nanohybrid material as CE thus offers a promising low-cost Pt-free counter electrode for DSSC.
Collapse
Affiliation(s)
- Won Chun Oh
- College of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, P.R. China. .,Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungcheongnam-do, 31962, South Korea.
| | - Kwang Youn Cho
- Korea Institute of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongsangnam-do, South Korea
| | - Chong Hun Jung
- Decontamination & Decommisioning Research Division, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong-gu, Daejeon, 305-600, South Korea
| | - Yonrapach Areerob
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungcheongnam-do, 31962, South Korea.
| |
Collapse
|
13
|
Murugadoss V, Panneerselvam P, Yan C, Guo Z, Angaiah S. A simple one-step hydrothermal synthesis of cobalt nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.142] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Tang B, Yu H, Huang W, Sun Y, Li X, Li S, Ma T. Three-dimensional graphene networks and RGO-based counter electrode for DSSCs. RSC Adv 2019; 9:15678-15685. [PMID: 35521385 PMCID: PMC9064301 DOI: 10.1039/c9ra02792k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/04/2019] [Indexed: 11/21/2022] Open
Abstract
Graphene is considered to be a potential replacement for the traditional Pt counter electrode (CE) in dye-sensitized solar cells (DSSCs). Besides a high electron transport ability, a close contact between the CE and electrolyte is crucial to its outstanding catalytic activity for the I3 -/I redox reaction. In this study, reduced graphene oxide (RGO) and three-dimensional graphene networks (3DGNs) were used to fabricate the CE, and the graphene-based CE endowed the resulting DSSC with excellent photovoltaic performance features. The high quality and continuous structure of the 3DGNs provided a channel amenable to fast transport of electrons, while the RGO afforded a close contact at the interface between the graphene basal plane and electrolyte. The obtained energy conversion efficiency (η) was closely related to the mass fraction and reduction degree of the RGO that was used. Corresponding optimization yielded, for the DSSCs based on the 3DGN-RGO CE, a value of η as high as 9.79%, comparable to that of the device using a Pt CE and hence implying promising prospects for the as-prepared CE.
Collapse
Affiliation(s)
- Bo Tang
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, School of Petroleum Engineering, Changzhou University Changzhou 213016 People's Republic of China
| | - Haogang Yu
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, School of Petroleum Engineering, Changzhou University Changzhou 213016 People's Republic of China
| | - Weiqiu Huang
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, School of Petroleum Engineering, Changzhou University Changzhou 213016 People's Republic of China
| | - Yunfei Sun
- College of Electronic and Information Engineering, Suzhou University of Sciences and Technology Suzhou Jiangsu 215009 People's Republic of China
| | - Xufei Li
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, School of Petroleum Engineering, Changzhou University Changzhou 213016 People's Republic of China
| | - Sen Li
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, School of Petroleum Engineering, Changzhou University Changzhou 213016 People's Republic of China
| | - Tingting Ma
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, School of Petroleum Engineering, Changzhou University Changzhou 213016 People's Republic of China
| |
Collapse
|