1
|
Khan S, Shukla AK, Bhattacharya A, Chand S, Chakraborty C. Harnessing Biomolecule-Infused 2D Multi-layered Luminescent Zn(II) Coordination Polymer for Electrochemical Energy Storage. Inorg Chem 2024; 63:18438-18447. [PMID: 39297576 DOI: 10.1021/acs.inorgchem.4c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Selecting the right functional linkers and metal centers is crucial for creating multifunctional crystalline coordination polymers, which show promise in energy storage applications. Herein, a new two-dimensional Zn(II)-based CP, named BPHCC-1, has been synthesized using solvothermal methods with 2-amino terephthalic acid (2ATA) and the biomolecule purine as key building blocks. Purine, which is relatively unexplored in CP synthesis, plays a crucial role in the distinct properties of CPs. BPHCC-1, obtained as a stable crystalline solid, was characterized through various analytical techniques including Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller analysis. The material's stability is attributed to extensive hydrogen bonding, π···π interactions, and coordination of the -NH2 group with the Zn(II) center. BPHCC-1 exhibits bright blue luminescence at 435 nm with a photoluminescence quantum yield of 29% in an aqueous dispersion. Furthermore, it demonstrates significant electrochemical energy storage performance, with a specific capacitance of 84 F g-1 at 3 A g-1 and retaining 64% of its original capacitance after 500 cycles. This study introduces a facile approach to designing multifunctional CPs, showcasing BPHCC-1's potential as a luminescent probe and pseudocapacitive supercapacitor. The findings highlight the versatility of BPHCC-1, suggesting broad opportunities for its use across diverse fields.
Collapse
Affiliation(s)
- Soumen Khan
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Jawaharnagar, Samirpet, Hyderabad, Telangana 500078, India
- Materials Center for Sustainable Energy & Environment (McSEE), Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India
| | - Adarash Kumar Shukla
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Jawaharnagar, Samirpet, Hyderabad, Telangana 500078, India
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Jawaharnagar, Samirpet, Hyderabad, Telangana 500078, India
| | - Santanu Chand
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Chanchal Chakraborty
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Jawaharnagar, Samirpet, Hyderabad, Telangana 500078, India
- Materials Center for Sustainable Energy & Environment (McSEE), Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
2
|
Zhang A, Zhang Q, Fu H, Zong H, Guo H. Metal-Organic Frameworks and Their Derivatives-Based Nanostructure with Different Dimensionalities for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303911. [PMID: 37541305 DOI: 10.1002/smll.202303911] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Indexed: 08/06/2023]
Abstract
With the urgent demand for the achievement of carbon neutrality, novel nanomaterials, and environmentally friendly nanotechnologies are constantly being explored and continue to drive the sustainable development of energy storage and conversion installations. Among various candidate materials, metal-organic frameworks (MOFs) and their derivatives with unique nanostructures have attracted increasing attention and intensive investigation for the construction of next generation electrode materials, benefitting from their unique intrinsic characteristics such as large specific surface area, high porosity, and chemical tunability as well as the interconnected channels. Nevertheless, the poor electrochemical conductivity severely limits their application prospects, hence a variety of nanocomposites with multifarious structures have been designed and proposed from different dimensionalities. In this review, recent advances based on MOFs and their derivatives in different dimensionalities ranging from 1D nanopowders to 2D nanofilms and 3D aerogels, as well as 4D self-supporting electrodes for supercapacitors are summarized and highlighted. Furthermore, the key challenges and perspectives of MOFs and their derivatives-based materials for the practical and sustainable electrochemical energy conversion and storage applications are also briefly discussed, which may be served as a guideline for the design of next-generation electrode materials from different dimensionalities.
Collapse
Affiliation(s)
- Aitang Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Quan Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hucheng Fu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hanwen Zong
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hanwen Guo
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
3
|
Li S, Ali S, Zuhra Z, Abbas Y, Xie G, Wang X, Ding S. Turning precious metal-loaded e-waste to useful catalysts: Investigation into supercilious recovery and catalyst viability for peroxymonosulfate activation. CHEMOSPHERE 2023:139170. [PMID: 37307931 DOI: 10.1016/j.chemosphere.2023.139170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Here, the key tasks to be accomplished are selective precious metal recovery from e-wastewater and their conversion into valuable catalysts for peroxymonosulfate (PMS) activation. In this regard, we developed a hybrid material using 3D functional graphene foam and copper para-phenylenedithol (Cu-pPDT) MOF. The prepared hybrid showed a supercilious recovery of 92-95% even up to five cycles for Au(III) and Pd(II), which can be viewed as a reference for both the 2D graphene and the MOFs family. The outstanding performance has been attributed principally to the impact of diverse functionality as well as the unique morphology of 3D graphene foam, which provided a wide range of surface area and additional active sites in the hybrid frameworks. To prepare the surface-loaded metal nanoparticle catalysts, the sorbed samples recovered after precious metal extraction were calcined at 800 °C. The viability of the developed catalysts for the breakdown of 4-nitrophenol (4-NP) via PMS activation was investigated. Electron paramagnetic resonance spectroscopy (EPR) and experiments with radical scavengers suggest that sulfate and hydroxyl radicals are the main reactive species involved in the breakdown of 4-NP. This is because the active graphitic carbon matrix and the exposed precious metal and copper active sites work together in a way that is more effective.
Collapse
Affiliation(s)
- Shuo Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China; Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shafqat Ali
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Zareen Zuhra
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yasir Abbas
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanqun Xie
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Xiaoxia Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Shujiang Ding
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
4
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
5
|
Zhang P, Wang M, Liu Y, Fu Y, Gao M, Wang G, Wang F, Wang Z, Chen G, Yang S, Liu Y, Dong R, Yu M, Lu X, Feng X. Largely Pseudocapacitive Two-Dimensional Conjugated Metal-Organic Framework Anodes with Lowest Unoccupied Molecular Orbital Localized in Nickel-bis(dithiolene) Linkages. J Am Chem Soc 2023; 145:6247-6256. [PMID: 36893495 DOI: 10.1021/jacs.2c12684] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Although two-dimensional conjugated metal-organic frameworks (2D c-MOFs) provide an ideal platform for precise tailoring of capacitive electrode materials, high-capacitance 2D c-MOFs for non-aqueous supercapacitors remain to be further explored. Herein, we report a novel phthalocyanine-based nickel-bis(dithiolene) (NiS4)-linked 2D c-MOF (denoted as Ni2[CuPcS8]) with outstanding pseudocapacitive properties in 1 M TEABF4/acetonitrile. Each NiS4 linkage is disclosed to reversibly accommodate two electrons, conferring the Ni2[CuPcS8] electrode a two-step Faradic reaction with a record-high specific capacitance among the reported 2D c-MOFs in non-aqueous electrolytes (312 F g-1) and remarkable cycling stability (93.5% after 10,000 cycles). Multiple analyses unveil that the unique electron-storage capability of Ni2[CuPcS8] originates from its localized lowest unoccupied molecular orbital (LUMO) over the nickel-bis(dithiolene) linkage, which allows the efficient delocalization of the injected electrons throughout the conjugated linkage units without inducing apparent bonding stress. The Ni2[CuPcS8] anode is used to demonstrate an asymmetric supercapacitor device that delivers a high operating voltage of 2.3 V, a maximum energy density of 57.4 Wh kg-1, and ultralong stability over 5000 cycles.
Collapse
Affiliation(s)
- Panpan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Mingming Gao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Gang Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
| | - Faxing Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| | - Sheng Yang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Minghao Yu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Niu L, Wu T, Chen M, Yang L, Yang J, Wang Z, Kornyshev AA, Jiang H, Bi S, Feng G. Conductive Metal-Organic Frameworks for Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200999. [PMID: 35358341 DOI: 10.1002/adma.202200999] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Indexed: 05/13/2023]
Abstract
As a class of porous materials with crystal lattices, metal-organic frameworks (MOFs), featuring outstanding specific surface area, tunable functionality, and versatile structures, have attracted huge attention in the past two decades. Since the first conductive MOF is successfully synthesized in 2009, considerable progress has been achieved for the development of conductive MOFs, allowing their use in diverse applications for electrochemical energy storage. Among those applications, supercapacitors have received great interest because of their high power density, fast charging ability, and excellent cycling stability. Here, the efforts hitherto devoted to the synthesis and design of conductive MOFs and their auspicious capacitive performance are summarized. Using conductive MOFs as a unique platform medium, the electronic and molecular aspects of the energy storage mechanism in supercapacitors with MOF electrodes are discussed, highlighting the advantages and limitations to inspire new ideas for the development of conductive MOFs for supercapacitors.
Collapse
Affiliation(s)
- Liang Niu
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Taizheng Wu
- Department of New Energy Science and Engineering and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Chen
- Department of New Energy Science and Engineering and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Long Yang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingjing Yang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxiang Wang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Alexei A Kornyshev
- Department of Chemistry, Imperial College London and Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Huili Jiang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sheng Bi
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, Paris, F-75005, France
| | - Guang Feng
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
7
|
Detection of antibiotics by electrochemical sensors based on metal-organic frameworks and their derived materials. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Lin X, Lai S, Fang G, Li X. Nickel(II) Cluster-Based Pillar-Layered Metal-Organic Frameworks for High-Performance Supercapacitors. Inorg Chem 2022; 61:17278-17288. [PMID: 36264004 DOI: 10.1021/acs.inorgchem.2c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most metal-organic frameworks (MOFs) cannot be used as electrode materials for supercapacitors because of their high costs, poor stabilities in aqueous solutions, inferior intrinsic electrocatalytic activities, and poor conductivities. Herein, the application of two nickel(II) cluster-based pillar-layered MOFs, Ni-mba-Na ([Ni8(mba)6(Cl)2Na(OH-)3]n, H2mba is 2-mercaptobenzoic acid) and Ni-mba-K ([Ni8(mba)6(Cl)2K(OH-)3]n), as electrode materials are reported. They differ from conductive MOFs because they are insulators with small specific surface areas (<10 m2 g-1), and H2mba is an inexpensive raw material. The conductivities of Ni-mba-Na and Ni-mba-K at 30 °C were 4.002 × 10-10 and >10-11 S cm-1, respectively. They showed excellent supercapacitor performance and stabilities and high inherent densities and specific capacitances. The specific powers of their asymmetric supercapacitors could reach up to 16,000 W kg-1; the specific energies of Ni-mba-Na and Ni-mba-K were 16.9 and 21.8 Wh kg-1, respectively. Design recommendations for these MOFs are provided based on their structure and performance differences. This paper shows a novel application of nonconductive MOFs in the energy storage field and design of high-performance electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Xihao Lin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Shilian Lai
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Guoyong Fang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Xinhua Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| |
Collapse
|
9
|
Controllable synthesis of nickel doped hierarchical zinc MOF with tunable morphologies for enhanced supercapability. J Colloid Interface Sci 2022; 618:375-385. [DOI: 10.1016/j.jcis.2022.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
|
10
|
Asadi M, Babamiri B, Hallaj R, Salimi A. Unusual Synthesis of Nanostructured Zn-MOF by Bipolar electrochemistry in Ionic liquid-based Electrolyte: Intrinsic Alkaline phosphatase-like Activity. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Highly dense Ni-MOF nanoflake arrays supported on conductive graphene/carbon fiber substrate as flexible microelectrode for electrochemical sensing of glucose. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Naskar P, Chakraborty P, Kundu D, Maiti A, Biswas B, Banerjee A. Envisaging Future Energy Storage Materials for Supercapacitors: An Ensemble of Preliminary Attempts. ChemistrySelect 2021. [DOI: 10.1002/slct.202100049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pappu Naskar
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Priyanka Chakraborty
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Debojyoti Kundu
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Apurba Maiti
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Biplab Biswas
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| | - Anjan Banerjee
- Department of Chemistry Presidency University-Kolkata 86/1 College Street Kolkata 700073 India
| |
Collapse
|
13
|
Three isostructural Zn/Ni nitro-containing metal-organic frameworks for supercapacitor. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Du M, Li Q, Zhao Y, Liu CS, Pang H. A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213341] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Wang DG, Liang Z, Gao S, Qu C, Zou R. Metal-organic framework-based materials for hybrid supercapacitor application. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213093] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Vengatesan MR, Alhseinat E, Arangadi AF, Anwer S, Kannangara YY, Song JK, Banat F. Ag-doped sepiolite intercalated graphene nanostructure for hybrid capacitive deionization system. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115799] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Polyaniline/Cu(II) Metal-organic Frameworks Composite for High Performance Supercapacitor Electrode. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01145-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Srinivasan R, Elaiyappillai E, Gowri S, Bella A, Sathiyan A, Meenatchi B, Merlin JP. Electrochemical performance of l-tryptophanium picrate as an efficient electrode material for supercapacitor application. Phys Chem Chem Phys 2019; 21:11829-11838. [DOI: 10.1039/c9cp02536g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
l-Tryptophanium picrate was synthesized and evaluated for its supercapacitor behavior and a 263 F g−1 specific capacitance was achieved.
Collapse
Affiliation(s)
| | | | - S. Gowri
- Department of Physics
- Cauvery College for Women
- Tiruchirappalli-620 018
- India
| | - A. Bella
- Department of Chemistry
- Bishop Heber College
- Tiruchirappalli-620 017
- India
| | - A. Sathiyan
- Department of Chemistry
- Bishop Heber College
- Tiruchirappalli-620 017
- India
| | - B. Meenatchi
- Department of Chemistry
- Bishop Heber College
- Tiruchirappalli-620 017
- India
| | | |
Collapse
|
19
|
Khrizanforov M, Shekurov R, Miluykov V, Gilmanova L, Kataeva O, Yamaleeva Z, Gerasimova T, Ermolaev V, Gubaidullin A, Laskin A, Budnikova Y. Excellent supercapacitor and sensor performance of robust cobalt phosphinate ferrocenyl organic framework materials achieved by intrinsic redox and structure properties. Dalton Trans 2019; 48:16986-16992. [DOI: 10.1039/c9dt03592c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new Co coordination polymer with phosphinates and Fc fragments was synthesized, which can be used as a water sensor and sorbent and also as a supercapacitor electrode.
Collapse
Affiliation(s)
- Mikhail Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Ruslan Shekurov
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Vasily Miluykov
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Leysan Gilmanova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Olga Kataeva
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
- A.M. Butlerov Chemistry Institute of the Kazan Federal University
| | - Zilya Yamaleeva
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Vadim Ermolaev
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Aidar Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Artem Laskin
- A.M. Butlerov Chemistry Institute of the Kazan Federal University
- Russia
| | - Yulia Budnikova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| |
Collapse
|