1
|
Palanisamy G, Thangarasu S, Oh TH. Effect of Sulfonated Inorganic Additives Incorporated Hybrid Composite Polymer Membranes on Enhancing the Performance of Microbial Fuel Cells. Polymers (Basel) 2023; 15:polym15051294. [PMID: 36904534 PMCID: PMC10006918 DOI: 10.3390/polym15051294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Microbial fuel cells (MFCs) provide considerable benefits in the energy and environmental sectors for producing bioenergy during bioremediation. Recently, new hybrid composite membranes with inorganic additives have been considered for MFC application to replace the high cost of commercial membranes and improve the performances of cost-effective polymers, such as MFC membranes. The homogeneous impregnation of inorganic additives in the polymer matrix effectively enhances the physicochemical, thermal, and mechanical stabilities and prevents the crossover of substrate and oxygen through polymer membranes. However, the typical incorporation of inorganic additives in the membrane decreases the proton conductivity and ion exchange capacity. In this critical review, we systematically explained the impact of sulfonated inorganic additives (such as (sulfonated) sSiO2, sTiO2, sFe3O4, and s-graphene oxide) on different kinds of hybrid polymers (such as PFSA, PVDF, SPEEK, SPAEK, SSEBS, and PBI) membrane for MFC applications. The membrane mechanism and interaction between the polymers and sulfonated inorganic additives are explained. The impact of sulfonated inorganic additives on polymer membranes is highlighted based on the physicochemical, mechanical, and MFC performances. The core understandings in this review can provide vital direction for future development.
Collapse
|
2
|
A new angle to control concentration profiles at electroactive biofilm interfaces: investigating a microfluidic perpendicular flow approach. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Boosting microfluidic microbial fuel cells performance via investigating electron transfer mechanisms, metal-based electrodes, and magnetic field effect. Sci Rep 2022; 12:7417. [PMID: 35523838 PMCID: PMC9076923 DOI: 10.1038/s41598-022-11472-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
The presented paper fundamentally investigates the influence of different electron transfer mechanisms, various metal-based electrodes, and a static magnetic field on the overall performance of microfluidic microbial fuel cells (MFCs) for the first time to improve the generated bioelectricity. To do so, as the anode of microfluidic MFCs, zinc, aluminum, tin, copper, and nickel were thoroughly investigated. Two types of bacteria, Escherichia coli and Shewanella oneidensis MR-1, were used as biocatalysts to compare the different electron transfer mechanisms. Interaction between the anode and microorganisms was assessed. Finally, the potential of applying a static magnetic field to maximize the generated power was evaluated. For zinc anode, the maximum open circuit potential, current density, and power density of 1.39 V, 138,181 mA m-2 and 35,294 mW m-2 were obtained, respectively. The produced current density is at least 445% better than the values obtained in previously published studies so far. The microfluidic MFCs were successfully used to power ultraviolet light-emitting diodes (UV-LEDs) for medical and clinical applications to elucidate their application as micro-sized power generators for implantable medical devices.
Collapse
|
4
|
de Fouchécour F, Larzillière V, Bouchez T, Moscoviz R. Systematic and quantitative analysis of two decades of anodic wastewater treatment in bioelectrochemical reactors. WATER RESEARCH 2022; 214:118142. [PMID: 35217490 DOI: 10.1016/j.watres.2022.118142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment is generally performed using energy-intensive processes, such as activated sludge. Improving energy efficiency has become one of the main challenges for next-generation wastewater treatment plants. Bioelectrochemical systems (BES) have been attracting attention because they take advantage of the chemical energy contained in wastewater while enabling the valorization of effluents: either with electrical energy (microbial fuel cells) or with useful chemicals (microbial electrolysis cells). Bioelectrochemical wastewater treatment has been under investigation since the early 2000s and is now the subject of an abundant literature, which is most frequently focused on anodic COD removal. Comparing results obtained in different studies is particularly difficult with BES, because many different parameters (effluent characteristics, inoculation, design, and operation) may interact and because using real effluents results in high variability. To address this issue, data were retrieved from 1,073 articles that were selected objectively and with transparency. This systematic review evaluates the potential of anodic wastewater treatment, based on 4,579 experimental observations. Overall, BES has already shown satisfactory treatment capacity, with a median chemical oxygen demand removal of 72%. However, the median coulombic efficiency was only 18%, increasing this parameter offers the greatest opportunity for BES improvement.
Collapse
Affiliation(s)
| | - Valentin Larzillière
- Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France; SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), 78230, Le Pecq, France
| | | | - Roman Moscoviz
- SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), 78230, Le Pecq, France
| |
Collapse
|
5
|
Aiken DC, Curtis TP, Heidrich ES. The Rational Design of a Financially Viable Microbial Electrolysis Cell for Domestic Wastewater Treatment. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.796805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microbial electrolysis cells (MECs) are yet to achieve commercial viability. Organic removal rates (ORR) and capital costs dictate an MEC’s financial competitiveness against activated sludge treatments. We used numerical methods to investigate the impact of acetate concentration and the distance between opposing anodes’ surfaces (anode interstices width) on MEC cost-performance. Numerical predictions were calibrated against laboratory observations using an evolutionary algorithm. Anode interstices width had a non-linear impact on ORR and therefore allowable cost. MECs could be financially competitive if anode interstices widths are carefully controlled (2.5 mm), material costs kept low (£5–10/m2-anode), and wastewater pre-treated, using hydrolysis to consistently achieve influent acetate concentrations >100 mg-COD/l.
Collapse
|
6
|
Selvasembian R, Mal J, Rani R, Sinha R, Agrahari R, Joshua I, Santhiagu A, Pradhan N. Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges. BIORESOURCE TECHNOLOGY 2022; 346:126462. [PMID: 34863847 DOI: 10.1016/j.biortech.2021.126462] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) technology have the potential to decarbonize electricity generation and offer an eco-friendly route for treating a wide range of industrial effluents from power generation, petrochemical, tannery, brewery, dairy, textile, pulp/paper industries, and agro-industries. Despite successful laboratory-scale studies, several obstacles limit the MFC technology for real-world applications. This review article aimed to discuss the most recent state-of-the-art information on MFC architecture, design, components, electrode materials, and anodic exoelectrogens to enhance MFC performance and reduce cost. In addition, the article comprehensively reviewed the industrial effluent characteristics, integrating conventional technologies with MFCs for advanced resource recycling with a particular focus on the simultaneous bioelectricity generation and treatment of various industrial effluents. Finally, the article discussed the challenges, opportunities, and future perspectives for the large-scale applications of MFCs for sustainable industrial effluent management and energy recovery.
Collapse
Affiliation(s)
- Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, India
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, India
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, India
| | - Roma Agrahari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, India
| | - Ighalo Joshua
- Department of Chemical Engineering, Nnamdi Azikiwe University, Nigeria
| | - Arockiasamy Santhiagu
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
7
|
Modelling the influence of soil properties on performance and bioremediation ability of a pile of soil microbial fuel cells. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Pinck S, Ostormujof LM, Teychené S, Erable B. Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms. Microorganisms 2020; 8:E1841. [PMID: 33238493 PMCID: PMC7700166 DOI: 10.3390/microorganisms8111841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is the ambition of many researchers to finally be able to close in on the fundamental, coupled phenomena that occur during the formation and expression of electrocatalytic activity in electroactive biofilms. It is because of this desire to understand that bioelectrochemical systems (BESs) have been miniaturized into microBES by taking advantage of the worldwide development of microfluidics. Microfluidics tools applied to bioelectrochemistry permit even more fundamental studies of interactions and coupled phenomena occurring at the microscale, thanks, in particular, to the concomitant combination of electroanalysis, spectroscopic analytical techniques and real-time microscopy that is now possible. The analytical microsystem is therefore much better suited to the monitoring, not only of electroactive biofilm formation but also of the expression and disentangling of extracellular electron transfer (EET) catalytic mechanisms. This article reviews the details of the configurations of microfluidic BESs designed for selected objectives and their microfabrication techniques. Because the aim is to manipulate microvolumes and due to the high modularity of the experimental systems, the interfacial conditions between electrodes and electrolytes are perfectly controlled in terms of physicochemistry (pH, nutrients, chemical effectors, etc.) and hydrodynamics (shear, material transport, etc.). Most of the theoretical advances have been obtained thanks to work carried out using models of electroactive bacteria monocultures, mainly to simplify biological investigation systems. However, a huge virgin field of investigation still remains to be explored by taking advantage of the capacities of microfluidic BESs regarding the complexity and interactions of mixed electroactive biofilms.
Collapse
Affiliation(s)
| | | | | | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31432 Toulouse, France; (S.P.); (L.M.O.); (S.T.)
| |
Collapse
|
9
|
Improving Conductivity in Nano-Conduit Flows by Using Thermal Pulse-Induced Brownian Motion: A Spectral Impulse Intensity Approach. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inter-particle and particle-wall connectivity in suspension flow has profound effects on thermal and electrical conductivity. The spectral impulse generation and the imparting of kinetic energy on the particles is shown through a mathematical analysis to be effective as a means of achieving an approximate equivalent of a Langevin thermostat. However, with dilute suspensions, the quadratic form of the thermal pulse spectra is modified with a damping coefficient to achieve the desired Langevin value. With the dense suspension system, the relaxation time is calculated from the non-linear differential equation, and the fluid properties were supported by the viscosity coefficient. A “smoothed” pulse is used for each time-step of the flow simulation to take care of the near-neighbor interactions of the adjacent particles. An approximate optimal thermostat is achieved when the number of extra pulses introduced within each time step is found to be nearly equal to the co-ordination number of each particle within the assembly. Furthermore, the ratio of the particle kinetic energy and the thermal energy imparted is found to be never quite equal to unity, as they both depend upon the finite values of the pulse duration and the relaxation time.
Collapse
|
10
|
Electricity generation from untreated fresh digestate with a cost-effective array of floating microbial fuel cells. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|