1
|
Zhou X, Wang Y, Denisov N, Kim H, Kim J, Will J, Spiecker E, Vaskevich A, Schmuki P. Pt Single Atoms Loaded on Thin-Layer TiO 2 Electrodes: Electrochemical and Photocatalytic Features. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404064. [PMID: 39155415 PMCID: PMC11579980 DOI: 10.1002/smll.202404064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Recently, the use of Pt in the form of single atoms (SA) has attracted considerable attention to promote the cathodic hydrogen production reaction from water in electrochemical or photocatalytic settings. First, produce suitable electrodes by Pt SA deposition on Direct current (DC)-sputter deposited titania (TiO2) layers on graphene-these electrodes allow to characterization of the electrochemical properties of Pt single atoms and their investigation in high-resolution HAADF-STEM. For Pt SAs loaded on TiO2, electrochemical H2 evolution shows only a very small overpotential. Concurrent with the onset of H2 evolution, agglomeration of the Pt SAs to clusters or nanoparticles (NPs) occurs. Potential cycling can be used to control SA agglomeration to variable-size NPs. The electrochemical activity of the electrode is directly related to the SA surface density (up to reaching the activity level of a plain Pt sheet). In contrast, for photocatalytic H2 generation already a minimum SA density is sufficient to reach control by photogenerated charge carriers. In electrochemical and photocatalytic approaches a typical TOF of ≈100-150 H2 molecules per second per site can be reached. Overall, the work illustrates a straightforward approach for reliable electrochemical and photoelectrochemical investigations of SAs and discusses the extraction of critical electrochemical factors of Pt SAs on titania electrodes.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Materials Science WW4‐LKOFriedrich‐Alexander‐University of Erlangen‐NurembergMartensstrasse 791058ErlangenGermany
| | - Yue Wang
- Department of Materials Science WW4‐LKOFriedrich‐Alexander‐University of Erlangen‐NurembergMartensstrasse 791058ErlangenGermany
| | - Nikita Denisov
- Department of Materials Science WW4‐LKOFriedrich‐Alexander‐University of Erlangen‐NurembergMartensstrasse 791058ErlangenGermany
| | - Hyesung Kim
- Department of Materials Science WW4‐LKOFriedrich‐Alexander‐University of Erlangen‐NurembergMartensstrasse 791058ErlangenGermany
| | - Jihyeon Kim
- Department of Materials Science WW4‐LKOFriedrich‐Alexander‐University of Erlangen‐NurembergMartensstrasse 791058ErlangenGermany
| | - Johannes Will
- Institute of Micro‐ and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM) IZNFFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro‐ and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM) IZNFFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Alexander Vaskevich
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceRehovot7610001Israel
| | - Patrik Schmuki
- Department of Materials Science WW4‐LKOFriedrich‐Alexander‐University of Erlangen‐NurembergMartensstrasse 791058ErlangenGermany
- Regional Centre of Advanced Technologies and MaterialsŠlechtitelů 27Olomouc78371Czech Republic
| |
Collapse
|
2
|
Luo G, Song M, Zhang Q, An L, Shen T, Wang S, Hu H, Huang X, Wang D. Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters. NANO-MICRO LETTERS 2024; 16:241. [PMID: 38980634 PMCID: PMC11233490 DOI: 10.1007/s40820-024-01463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts. Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance, simultaneously provide a radical analysis of the interrelationship between structure and activity. In this review, the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized. Firstly, the synthetic strategies, characterization, dynamics and types of single atoms coupled with clusters/nanoparticles are introduced, and then the key factors controlling the structure of the composite catalysts are discussed. Next, several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated. Eventually, the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined.
Collapse
Affiliation(s)
- Guanyu Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Qian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Lulu An
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Shuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Hanyu Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiao Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
3
|
Yu Y, Zhao H, Chen K, Cao S, Lan M. Sandwich-type electrochemical aptasensor for sensitive detection of myoglobin based on Pt@CuCo-oxide nanoparticles as a signal marker. Talanta 2024; 272:125764. [PMID: 38346359 DOI: 10.1016/j.talanta.2024.125764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
When an acute myocardial infarction (AMI) occurs, myoglobin (Mb) is the biomarker whose concentration firstly increases, and the high sensitive detection of Mb is critical for early diagnosis of AMI. Herein, a sandwich-type electrochemical aptasensor for the sensitive detection of Mb was constructed by using Pt@Cu1.33OCo0.83O as the signal marker. On one hand, nano-flower-like Cu1.33OCo0.83O was synthesized by hydrothermal method and Pt nanoparticles (Pt NPs) were loaded on its surface. Pt@Cu1.33OCo0.83O could immobilize aptamer 2 (Apt2) successfully by the Pt-S bond. And because of the synergistic effect between Pt and bimetallic oxide, Pt@Cu1.33OCo0.83O had an excellent catalytic effect on the signal source of hydrogen peroxide (H2O2) to amplify the current signal, which enhance the sensitivity of the aptasensor. On the other hand, the screen-printed gold electrode (SPGE) was used as the sensing base, which had good conductivity and ensured the immobilization of aptamer 1 (Apt1). The quantitative detection of Mb was achieved by specific recognition between Mb and Apt1, Apt2. As a result, the constructed electrochemical aptasensor had a good linear range (1-1500 ng/mL) with a low detection limit (LOD) of 0.128 ng/mL (S/N = 3), and a high sensitivity of 29.47 μA dec-1. The aptasensor also realized the detection of Mb in human serum samples with good accuracy, and the results were consistent with the hospital's biochemical indicators, which demonstrated the potential application of the prepared sensor in the clinical detection of Mb.
Collapse
Affiliation(s)
- Yueying Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shida Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
4
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Lan J, Wei Z, Lu YR, Chen D, Zhao S, Chan TS, Tan Y. Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst. Nat Commun 2023; 14:2870. [PMID: 37208321 DOI: 10.1038/s41467-023-38603-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Conversion into high-value-added organic nitrogen compounds through electrochemical C-N coupling reactions under ambient conditions is regarded as a sustainable development strategy to achieve carbon neutrality and high-value utilization of harmful substances. Herein, we report an electrochemical process for selective synthesis of high-valued formamide from carbon monoxide and nitrite with a Ru1Cu single-atom alloy under ambient conditions, which achieves a high formamide selectivity with Faradaic efficiency of 45.65 ± 0.76% at -0.5 V vs. RHE. In situ X-ray absorption spectroscopy, coupled with in situ Raman spectroscopy and density functional theory calculations results reveal that the adjacent Ru-Cu dual active sites can spontaneously couple *CO and *NH2 intermediates to realize a critical C-N coupling reaction, enabling high-performance electrosynthesis of formamide. This work offers insight into the high-value formamide electrocatalysis through coupling CO and NO2- under ambient conditions, paving the way for the synthesis of more-sustainable and high-value chemical products.
Collapse
Affiliation(s)
- Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| | - Zengxi Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - DeChao Chen
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan.
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
6
|
Du J, Chen J, Zhang C, Jiang G. Screening out the Transition Metal Single Atom Supported on Onion-like Carbon (OLC) for the Hydrogen Evolution Reaction. Inorg Chem 2023; 62:1001-1006. [PMID: 36594454 DOI: 10.1021/acs.inorgchem.2c03922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A recent experiment has confirmed that onion-like nanospheres of carbon (OLC) covered with single Pt atoms show comparable hydrogen evolution reaction (HER) catalytic activity to the commercial Pt/C. In this work, we have performed screening calculations on the single transition metal (TM) atom supported on OLC (a total of 26 candidates) using the density functional theory (DFT) to find excellent HER catalysts. Our calculated results indicate that the Nb1/CLO, Mo1/CLO, Ru1/CLO, Rh1/CLO, Pd1/CLO, and Ir1/OLC show high-efficient catalysts performance for the HER, as experimental Pt1/OLC does. We also try to seek an appropriate descriptor relevant to the Gibbs free energies, and the average local ionization energy (ALIE), which is first used to predict HER activity, shows a perfect linear correlation with Gibbs free energy. It is interesting to note that the ALIE descriptor is more successful than the commonly used d-band center.
Collapse
Affiliation(s)
- Jiguang Du
- College of Physics, Sichuan University, Chengdu610064, China
| | - Jun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang621908, Sichuan, PR China
| | - Chuanyu Zhang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu610059, China
| | - Gang Jiang
- Insitute of Atomic and Molecular Physics, Sichuan University, Chengdu610065, China
| |
Collapse
|
7
|
Ding J, Yang H, Zhang S, Liu Q, Cao H, Luo J, Liu X. Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters-based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204524. [PMID: 36287086 DOI: 10.1002/smll.202204524] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Indexed: 05/27/2023]
Abstract
With the development of renewable energy systems, clean hydrogen is burgeoning as an optimal alternative to fossil fuels, in which its application is promising to retarding the global energy and environmental crisis. The hydrogen evolution reaction (HER), capable of producing high-purity hydrogen rapidly in electrocatalytic water splitting, has received much attention. Abundant research about HER has been done, focusing on advanced electrocatalyst design with high efficiency and robust stability. As potential HER catalysts, metal nanoclusters (MNCs) have been studied extensively. They are composed of several to a hundred metal atoms, with sizes being comparable to the Fermi wavelength of electrons, that is, < 2.0 nm. Different from metal atoms/nanoparticles, they exhibit unique catalytic properties due to their quantum size effect and low-coordination environment. In this review, the activity-enhancing approaches of MNCs applied in HER electrocatalysis are mainly summarized. Furthermore, recent progress in MNCs classified with different stabilization strategies, that is, the freestanding MNCs, MNCs with organic, metal and carbon supports, are introduced. Finally, the current challenges and deficiencies of these MNCs for HER are prospected.
Collapse
Affiliation(s)
- Junyang Ding
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
8
|
Zhao W, Xu F, Wang Z, Pan Z, Ye Y, Hu S, Weng B, Zhu R. Modulation of IrO 6 Chemical Environment for Highly Efficient Oxygen Evolution in Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205495. [PMID: 36310342 DOI: 10.1002/smll.202205495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The sluggish kinetics of the oxygen evolution reaction (OER) limits the commercialization of oxygen electrochemistry, which plays a key role in renewable energy technologies such as fuel cells and electrolyzers. Herein, a facile and practical strategy is developed to successfully incorporate Ir single atoms into the lattice of transition metal oxides (TMOs). The chemical environment of Ir and its neighboring lattice oxygen is modulated, and the lattice oxygen provides lone-pair electrons and charge balance to stabilize Ir single atoms, resulting in the enhancement of both OER activity and durability. In particular, Ir0.08 Co2.92 O4 NWs exhibit an excellent mass activity of 1343.1 A g-1 and turnover frequency (TOF) of 0.04 s-1 at overpotentials of 300 mV. And this catalyst also displays significant stability in acid at 10 mA cm-2 over 100 h. Overall water splitting using Pt/C as the hydrogen evolution reaction catalyst and Ir0.08 Co2.92 O4 NWs as the OER catalyst takes only a cell voltage of 1.494 V to achieve 10 mA cm-2 with a perfect stability. This work demonstrates a simple approach to produce highly active and acid-stable transition metal oxides electrocatalysts with trace Ir.
Collapse
Affiliation(s)
- Wenli Zhao
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan Province, 410082, China
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Zhaoyang Wang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan Province, 410082, China
| | - Zhipeng Pan
- Guizhou Meling Power sources Co., Ltd, Zunyi, Guizhou Province, 563000, China
| | - Yiming Ye
- China Institute of Atomic Energy, Beijing Province, 102413, China
| | - Shilin Hu
- China Institute of Atomic Energy, Beijing Province, 102413, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Rilong Zhu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan Province, 410082, China
| |
Collapse
|
9
|
Solid-state mechanochemical synthesis of Rh/Al2O3 catalysts for effective hydrolysis of ammonia borane. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
The heterostructure of ceria and hybrid transition metal oxides with high electrocatalytic performance for water splitting and enzyme-free glucose detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Tomboc GM, Kim T, Jung S, Yoon HJ, Lee K. Modulating the Local Coordination Environment of Single-Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105680. [PMID: 35102698 DOI: 10.1002/smll.202105680] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Single-atom catalysts (SACs) hold the promise of utilizing 100% of the participating atoms in a reaction as active catalytic sites, achieving a remarkable boost in catalytic efficiency. Thus, they present great potential for noble metal-based electrochemical application systems, such as water electrolyzers and fuel cells. However, their practical applications are severely hindered by intrinsic complications, namely atom agglomeration and relocation, originating from the uncontrollably high surface energy of isolated single-atoms (SAs) during postsynthetic treatment processes or catalytic reactions. Extensive efforts have been made to develop new methodologies for strengthening the interactions between SAs and supports, which could ensure the desired stability of the active catalytic sites and their full utilization by SACs. This review covers the recent progress in SACs development while emphasizing the association between the regulation of coordination environments (e.g., coordination atoms, numbers, sites, structures) and the electrocatalytic performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The crucial role of coordination chemistry in modifying the intrinsic properties of SACs and manipulating their metal-loading, stability, and catalytic properties is elucidated. Finally, the future challenges of SACS development and the industrial outlook of this field are discussed.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sangmin Jung
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
12
|
|
13
|
Li J, Yue MF, Wei YM, Li JF. Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
15
|
Zhao Y, Jiang WJ, Zhang J, Lovell EC, Amal R, Han Z, Lu X. Anchoring Sites Engineering in Single-Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102801. [PMID: 34477254 DOI: 10.1002/adma.202102801] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Indexed: 05/23/2023]
Abstract
Single-atom catalysts (SACs) have been at the frontier of research field in catalysis owing to the maximized atomic utilization, unique structures and properties. The atomically dispersed and catalytically active metal atoms are necessarily anchored by surrounding atoms. As such, the structure and composition of anchoring sites significantly influence the catalytic performance of SACs even with the same metal element. Significant progress has been made to understand structure-activity relationships at an atomic level, but in-depth understanding in precisely designing highly efficient SACs for the targeted reactions is still required. In this review, various anchoring sites in SACs are summarized and classified into five different types (doped heteroatoms, defect sites, surface atoms, metal sites, and cavity sites). Then, their impacts on catalytic performance are elucidated for electrochemical reactions based on their distance from the metal center (first coordination shell and beyond). Further, SACs anchored on two typical types of hosts, carbon- and metal-based materials, are highlighted, and the effects of anchoring points on achieving the desirable atomic structure, catalytic performance, and reaction pathways are elaborated. At last, insights and outlook to the SAC field based on current achievements and challenges are presented.
Collapse
Affiliation(s)
- Yufei Zhao
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wen-Jie Jiang
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jinqiang Zhang
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhaojun Han
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, Sydney, NSW, 2070, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
16
|
Wang Y, Cui X, Peng L, Li L, Qiao J, Huang H, Shi J. Metal-Nitrogen-Carbon Catalysts of Specifically Coordinated Configurations toward Typical Electrochemical Redox Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100997. [PMID: 34218474 DOI: 10.1002/adma.202100997] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/02/2021] [Indexed: 06/13/2023]
Abstract
Metal-nitrogen-carbon (M-N-C) material with specifically coordinated configurations is a promising alternative to costly Pt-based catalysts. In the past few years, great progress is made in the studies of M-N-C materials, including the structure modulation and local coordination environment identification via advanced synthetic strategies and characterization techniques, which boost the electrocatalytic performances and deepen the understanding of the underlying fundamentals. In this review, the most recent advances of M-N-C catalysts with specifically coordinated configurations of M-Nx (x = 1-6) are summarized as comprehensively as possible, with an emphasis on the synthetic strategy, characterization techniques, and applications in typical electrocatalytic reactions of the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, CO2 reduction reaction, etc., along with mechanistic exploration by experiments and theoretical calculations. Furthermore, the challenges and potential perspectives for the future development of M-N-C catalysts are discussed.
Collapse
Affiliation(s)
- Yongxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Xiangzhi Cui
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Luwei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Road, Shanghai, 200092, China
| | - Haitao Huang
- Department of Applied Physics, Hong Kong Polytechnic University, 11 Yucai road, Kowloon, Hong Kong, 999077, China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| |
Collapse
|
17
|
Zhao G, Fang C, Hu J, Zhang D. Platinum-Based Electrocatalysts for Direct Alcohol Fuel Cells: Enhanced Performances toward Alcohol Oxidation Reactions. Chempluschem 2021; 86:574-586. [PMID: 33830678 DOI: 10.1002/cplu.202000811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/20/2021] [Indexed: 12/28/2022]
Abstract
In the past few decades, Pt-based electrocatalysts have attracted great interests due to their high catalytic performances toward the direct alcohol fuel cell (DAFC). However, the high cost, poor stability, and the scarcity of Pt have markedly hindered their large-scale utilization in commerce. Therefore, enhancing the activity and durability of Pt-based electrocatalysts, reducing the Pt amount and thus the cost of DAFC have become the keys for their practical applications. In this minireview, we summarized some basic concepts to evaluate the catalytic performances in electrocatalytic alcohol oxidation reaction (AOR) including electrochemical active surface area, activity and stability, the effective approaches for boosting the catalytic AOR performance involving size decrease, structure and morphology modulation, composition effect, catalyst supports, and assistance under other external energies. Furthermore, we also presented the remaining challenges of the Pt-based electrocatalysts to achieve the fabrication of a real DAFC.
Collapse
Affiliation(s)
- Guili Zhao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Caihong Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241000, P. R. China
| | - Jinwu Hu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Deliang Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
18
|
Song X, Zhu W, Wang X, Tan Z. Recent Advances of CeO
2
‐Based Electrocatalysts for Oxygen and Hydrogen Evolution as well as Nitrogen Reduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202001614] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xue‐Zhi Song
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Panjin Campus Panjin 124221 China
| | - Wen‐Yu Zhu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Panjin Campus Panjin 124221 China
| | - Xiao‐Feng Wang
- School of Mathematics and Physics Science Panjin 124221 China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Panjin Campus Panjin 124221 China
| |
Collapse
|
19
|
Hashemniaye-Torshizi R, Ashraf N, Arbab-Zavar MH, Dianat S. In situ anodic dissolution–cathodic deposition route for preparation of the Pt–SiW 11Co/SiW 11Co–CNP/GC electrode: application as an efficient electrode for the hydrogen evolution reaction. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01195a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel nanohybrid based on carbon nanoparticles, platinum nanoparticles, and SiW11Co polyoxometalate is introduced as an efficient electrocatalyst for the hydrogen evolution reaction (HER).
Collapse
Affiliation(s)
| | - Narges Ashraf
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | | | - Somayeh Dianat
- Department of Chemistry
- Faculty of Sciences
- University of Hormozgan
- Bandar Abbas 71961
- Iran
| |
Collapse
|
20
|
Gao J, Zhang F, Gan W, Gui Y, Qiu H, Li H, Yuan Q. MOF-Derived 2D/3D Hierarchical N-Doped Graphene as Support for Advanced Pt Utilization in Ethanol Fuel Cell. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47667-47676. [PMID: 33030892 DOI: 10.1021/acsami.0c15493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Development of bifunctional catalysts with low platinum (Pt) content for the ethanol oxidation reaction (EOR) and the oxygen reduction reaction (ORR) is highly desirable, yet challenging. Herein, we present structural engineering of a series of two-dimensional/three-dimensional (2D/3D) hierarchical N-doped graphene-supported nanosized Pt3Co alloys and Co clusters (PtCo@N-GNSs) via a hydrolysis-pyrolysis route. For the ORR, the optimal PtCo@N-GNS exhibits a high mass activity of 3.01 A mgPt-1, which is comparable to the best Pt-based catalyst obtained through sophisticated synthesis. It also possesses excellent stability with minor decay after 50 000 cyclic voltammograms (CV) cycles in acidic medium. For the EOR, PtCo@N-GNS achieves the highest mass-specific and area-specific activities of 1.96 A mgPt-1 and 5.75 mA cm-2, respectively, among all of the reported EOR catalysts to date. The unique 2D/3D hierarchy, high Pt utilization, and valid encapsulation of nanosized Pt3Co/Co synergistically contribute to the robust ORR and EOR activities of the present PtCo@N-GNS. A direct ethanol fuel cell based on PtCo@N-GNS delivers a high open-circuit potential of 0.9 V, a stable power density of 10.5 mW cm-2, and an excellent rate performance, implying the feasibility of the bifunctional PtCo@N-GNS. This work offers a new strategy for designing an ultralow Pt loading yet highly active and durable catalyst for ethanol fuel cell application.
Collapse
Affiliation(s)
- Jiaojiao Gao
- Flexible Printed Electronics Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fei Zhang
- Flexible Printed Electronics Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wei Gan
- Flexible Printed Electronics Technology Center and State Key Laboratory of Advanced Welding and Joining, and School of Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yawen Gui
- Flexible Printed Electronics Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Huajun Qiu
- Flexible Printed Electronics Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Huanglong Li
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Qunhui Yuan
- Flexible Printed Electronics Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
21
|
Affiliation(s)
- Bingzhang Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
22
|
Bai G, Liu C, Gao Z, Lu B, Tong X, Guo X, Yang N. Atomic Carbon Layers Supported Pt Nanoparticles for Minimized CO Poisoning and Maximized Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902951. [PMID: 31353799 DOI: 10.1002/smll.201902951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Maximizing activity of Pt catalysts toward methanol oxidation reaction (MOR) together with minimized poisoning of adsorbed CO during MOR still remains a big challenge. In the present work, uniform and well-distributed Pt nanoparticles (NPs) grown on an atomic carbon layer, that is in situ formed by means of dry-etching of silicon carbide nanoparticles (SiC NPs) with CCl4 gas, are explored as potential catalysts for MOR. Significantly, as-synthesized catalysts exhibit remarkably higher MOR catalytic activity (e.g., 647.63 mA mg-1 at a peak potential of 0.85 V vs RHE) and much improved anti-CO poisoning ability than the commercial Pt/C catalysts, Pt/carbon nanotubes, and Pt/graphene catalysts. Moreover, the amount of expensive Pt is a few times lower than that of the commercial and reported catalyst systems. As confirmed from density functional theory (DFT) calculations and X-ray absorption fine structure (XAFS) measurements, such high performance is due to reduced adsorption energy of CO on the Pt NPs and an increased amount of adsorbed energy OH species that remove adsorbed CO fast and efficiently. Therefore, these catalysts can be utilized for the development of large-scale and industry-orientated direct methanol fuel cells.
Collapse
Affiliation(s)
- Gailing Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, China
| | - Chang Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Baoying Lu
- Guangxi University of Science and Technology, Liuzhou, 545000, China
| | - Xili Tong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xiangyun Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| |
Collapse
|
23
|
Saire-Saire S, Barbosa ECM, Garcia D, Andrade LH, Garcia-Segura S, Camargo PHC, Alarcon H. Green synthesis of Au decorated CoFe 2O 4 nanoparticles for catalytic reduction of 4-nitrophenol and dimethylphenylsilane oxidation. RSC Adv 2019; 9:22116-22123. [PMID: 35518899 PMCID: PMC9066651 DOI: 10.1039/c9ra04222a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/30/2019] [Indexed: 12/26/2022] Open
Abstract
Gold nanoparticles (Au NPs) have been widely employed in catalysis. Here, we report on the synthesis and catalytic evaluation of a hybrid material composed of Au NPs deposited at the surface of magnetic cobalt ferrite (CoFe2O4). Our reported approach enabled the synthesis of well-defined Au/CoFe2O4 NPs. The Au NPs were uniformly deposited at the surface of the support, displayed spherical shape, and were monodisperse in size. Their catalytic performance was investigated towards the reduction of 4-nitrophenol and the selective oxidation of dimethylphenylsilane to dimethylphenylsilanol. The material was active towards both transformations. In addition, the LSPR excitation in Au NPs could be employed to enhance the catalytic performance, which was demonstrated in the 4-nitrophenol reduction. Finally, the magnetic support allowed for the easy recovery and reuse of the Au/CoFe2O4 NPs. In this case, our data showed that no significant loss of performance took place even after 10 reaction cycles in the oxidation of dimethylphenylsilane to dimethylphenylsilanol. Overall, our results indicate that Au/CoFe2O4 are interesting systems for catalytic applications merging high performances, recovery and re-use, and enhancement of activities under solar light illumination.
Collapse
Affiliation(s)
- Samuel Saire-Saire
- Center for Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería Av. Tupac Amaru 210, Rímac 15333 Lima Peru
| | - Eduardo C M Barbosa
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo-SP Brazil
| | - Daniel Garcia
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo-SP Brazil
| | - Leandro H Andrade
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo-SP Brazil
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University Tempe AZ 85287-3005 USA
| | - Pedro H C Camargo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo-SP Brazil
| | - Hugo Alarcon
- Center for Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería Av. Tupac Amaru 210, Rímac 15333 Lima Peru
| |
Collapse
|