1
|
Lin J, Kilani M, Baharfar M, Wang R, Mao G. Understanding the nanoscale phenomena of nucleation and crystal growth in electrodeposition. NANOSCALE 2024; 16:19564-19588. [PMID: 39380552 DOI: 10.1039/d4nr02389g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Electrodeposition is used at the industrial scale to make coatings, membranes, and composites. With better understanding of the nanoscale phenomena associated with the early stage of the process, electrodeposition has potential to be adopted by manufacturers of energy storage devices, advanced electrode materials, fuel cells, carbon dioxide capturing technologies, and advanced sensing electronics. The ability to conduct precise electrochemical measurements using cyclic voltammetry, chronoamperometry, and chronopotentiometry in addition to control of precursor composition and concentration makes electrocrystallization an attractive method to investigate nucleation and early-stage crystal growth. In this article, we review recent findings of nucleation and crystal growth behaviors at the nanoscale, paying close attention to those that deviate from the classical theories in various electrodeposition systems. The review affirms electrodeposition as a valuable method both for gaining new insights into nucleation and crystallization on surfaces and as a low-cost scalable technology for the manufacturing of advanced materials and devices.
Collapse
Affiliation(s)
- Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Ren Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| |
Collapse
|
2
|
Rafiq Q, Khan MT, Hayat SS, Azam S, Rahman AU, Elansary HO, Shan M. Adsorption and solar light activity of noble metal adatoms (Au and Zn) on Fe(111) surface: a first-principles study. Phys Chem Chem Phys 2024; 26:17118-17131. [PMID: 38845366 DOI: 10.1039/d3cp04504h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Noble metals such as gold (Au), zinc (Zn), and iron (Fe) are highly significant in both fundamental and technological contexts owing to their applications in optoelectronics, optical coatings, transparent coatings, photodetectors, light-emitting devices, photovoltaics, nanotechnology, batteries, and thermal barrier coatings. This study presents a comprehensive investigation of the optoelectronic properties of Fe(111) and Au, Zn/Fe(111) materials using density functional theory (DFT) first-principles method with a focus on both materials' spin orientations. The optoelectronic properties were obtained employing the generalized gradient approximation (GGA) and the full-potential linearized augmented plane wave (FP-LAPW) approach, integrating the exchange-correlation function with the Hubbard potential U for improved accuracy. The arrangement of Fe(111) and Au, Zn/Fe(111) materials was found to lack an energy gap, indicating a metallic behavior in both the spin-up state and the spin-down state. The optical properties of Fe(111) and Au, Zn/Fe(111) materials, including their absorption coefficient, reflectivity, energy-loss function, refractive index, extinction coefficient, and optical conductivity, were thoroughly examined for both spin channels in the spectral region from 0.0 eV to 14 eV. The calculations revealed significant spin-dependent effects in the optical properties of the materials. Furthermore, this study explored the properties of the electronic bonding between several species in Fe(111) and Au, Zn/Fe(111) materials by examining the density distribution mapping of charge within the crystal symmetries.
Collapse
Affiliation(s)
- Qaiser Rafiq
- Department of Physics, International Islamic University, Islamabad, 44000, Pakistan.
| | - Muhammad Tahir Khan
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, People's Republic of China.
- School of computer science and technology, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Sardar Sikandar Hayat
- Department of Physics, International Islamic University, Islamabad, 44000, Pakistan.
| | - Sikander Azam
- Faculty of engineering and applied sciences, Riphah International University, Islamabad 44000, Pakistan.
| | - Amin Ur Rahman
- Faculty of engineering and applied sciences, Riphah International University, Islamabad 44000, Pakistan.
| | - Hosam O Elansary
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Shan
- Materials simulation Research Laboratory (MSRL), Institute of Physics, Bahauddin Zakariya University Multan, Multan, 60800, Pakistan
| |
Collapse
|
3
|
Yang P, Bi Z, Shang G. Operando Imaging of Over-Discharge-Induced Surface Morphology Evolutions of LiMn 2O 4 Submicron-Sized Particles by Electrochemical High-Speed Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13801-13806. [PMID: 37463271 DOI: 10.1021/acs.langmuir.3c01126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Spinel LiMn2O4 is a promising cathode material but suffers from severe capacity fading during battery operation. One of capacity fade mechanisms results from changes in its morphology and structure due to over-discharge. In this work, for the first time, we successfully tracked the morphologic evolution of LiMn2O4 submicron-sized particles during over-discharging by our home-made electrochemical high-speed atomic force microscopy (EC-HS-AFM). Seven hundred and sixty successive EC-HS-AFM images were stably captured at an imaging speed of ∼0.85 fps at corresponding potentials during over-discharging in ∼15 min, from which evolutions of nanoscale wrinkle-like and step-like structures on the particle surface were clearly observed. The phenomena could be resulted from the complex stresses due to structural distortion during the phase transformation from cubic (LiMn2O4) to tetragonal (Li2Mn2O4), and the formation of the Li2Mn2O4 phase was confirmed by ex situ XRD. Moreover, the particle surface area as a function of the potential was quantitatively extracted from the EC-HS-AFM images, revealing the irreversible expansion/contraction of the particles, and this finding obtained at the nanoscale was consistent with the macroscopic results tested by cyclic voltammetry and galvanostatic charge/discharge methods. These results demonstrate that the EC-HS-AFM is a powerful tool to establish the correlation between the over-discharge-induced surface morphology changes and irreversibility of the Li-ion insertion/extraction as well as capacity fading.
Collapse
Affiliation(s)
- Peifa Yang
- School of Physics, Beihang University, Beijing 100191, People's Republic of China
| | - Zhuanfang Bi
- School of Physics, Beihang University, Beijing 100191, People's Republic of China
| | - Guangyi Shang
- School of Physics, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
4
|
Mita M, Matsushima H, Ueda M, Ito H. In-situ high-speed atomic force microscopy observation of dynamic nanobubbles during water electrolysis. J Colloid Interface Sci 2022; 614:389-395. [DOI: 10.1016/j.jcis.2022.01.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
5
|
Fernández-Félix TC, Santana JA. Atomic Structures of Single-Layer Nanoislands of Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au Supported on Au(111) from Density Functional Theory Calculations. SURFACE SCIENCE 2022; 716:121960. [PMID: 34737461 PMCID: PMC8562674 DOI: 10.1016/j.susc.2021.121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have used density functional theory calculations to study the atomic structure of single-layer nanoislands of metal M (M=Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au) supported on M(111) and Au(111) surfaces. Nanoislands of Cu, Pd, Ag, Pt, and Au have planar structures on Au(111), while nanoislands of Ni, Rh, and Ir are nonplanar. The calculations also show that nanoislands of Cu, Pd, Pt, and Au on Au(111) with a diameter below 3 nm can have one of several atomic structures. Two of these structures have atoms at the edges of the nanoislands located near bridge sites on Au(111), and the other structures have atoms at the edges and center of the nanoislands located near bridge sites. The relative stability of these atomic structures depends on the size and nature of the Au-supported nanoparticles. Our findings provided computational support for the work of Liao and Ya [J. Phys. Chem. C. 121 (2017) 19218-19225] reporting the formation of two phases of Pt nanoislands on Au(111). These findings also reveal the rich and complex atomic structures of small single-layer metal nanoislands supported on metal surfaces.
Collapse
|
6
|
Vázquez-Lizardi GA, Ruiz-Casanova LA, Cruz-Sánchez RM, Santana JA. Simulation of Metal-Supported Metal-Nanoislands: A Comparison of DFT Methods. SURFACE SCIENCE 2021; 712:121889. [PMID: 34176977 PMCID: PMC8224827 DOI: 10.1016/j.susc.2021.121889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have evaluated various density functional theory (DFT) methods to simulate geometric, energetic, electronic, and hydrogen adsorption properties of metal-nanoparticles supported on metal surfaces. We used Pt and Pd nanoislands on Au(111) as model systems. The evaluated DFT methods include GGA (PW91, PBE, RPBE, revPBE, and PBESol), GGA with van der Waals (vdW) corrected (PBE-D3), GGA with optimized vdW functionals (revPBE-vdW), meta-GGA (SCAN and MS2), and the machine learning-based method BEEF-vdW. The results show that the various DFT methods yield similar geometric and electronic properties for Pt (or Pd) nanoislands on Au(111). The DFT methods also produce similar relative energetics for small Pt (or Pd) clusters with different conformations on Au(111). The results show that a triatomic cluster of Pt on Au(111) is more stable with a linear conformation. In contrast, a triatomic cluster of Pd is more stable with a triangular conformation. For clusters with four or more atoms, Pt and Pd clusters on Au(111) prefer non-linear conformation. We found that the various DFT methods yield different results only for the adsorption energy of hydrogen.
Collapse
Affiliation(s)
| | | | | | - Juan A. Santana
- Department of Chemistry, University of Puerto Rico at Cayey, Cayey, Puerto Rico, 00737
| |
Collapse
|
7
|
Kielar C, Zhu S, Grundmeier G, Keller A. Quantitative Assessment of Tip Effects in Single-Molecule High-Speed Atomic Force Microscopy Using DNA Origami Substrates. Angew Chem Int Ed Engl 2020; 59:14336-14341. [PMID: 32485088 PMCID: PMC7496922 DOI: 10.1002/anie.202005884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Indexed: 01/19/2023]
Abstract
High-speed atomic force microscopy (HS-AFM) is widely employed in the investigation of dynamic biomolecular processes at a single-molecule level. However, it remains an open and somewhat controversial question, how these processes are affected by the rapidly scanned AFM tip. While tip effects are commonly believed to be of minor importance in strongly binding systems, weaker interactions may significantly be disturbed. Herein, we quantitatively assess the role of tip effects in a strongly binding system using a DNA origami-based single-molecule assay. Despite its femtomolar dissociation constant, we find that HS-AFM imaging can disrupt monodentate binding of streptavidin (SAv) to biotin (Bt) even under gentle scanning conditions. To a lesser extent, this is also observed for the much stronger bidentate SAv-Bt complex. The presented DNA origami-based assay can be universally employed to quantify tip effects in strongly and weakly binding systems and to optimize the experimental settings for their reliable HS-AFM imaging.
Collapse
Affiliation(s)
- Charlotte Kielar
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
- Present address: Institute of Resource EcologyHelmholtz-Zentrum Dresden-RossendorfBautzner Landstraße 40001328DresdenGermany
| | - Siqi Zhu
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Guido Grundmeier
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
8
|
Kielar C, Zhu S, Grundmeier G, Keller A. Quantitative Assessment of Tip Effects in Single‐Molecule High‐Speed Atomic Force Microscopy Using DNA Origami Substrates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Charlotte Kielar
- Technical and Macromolecular Chemistry Paderborn University Warburger Str. 100 33098 Paderborn Germany
- Present address: Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
| | - Siqi Zhu
- Technical and Macromolecular Chemistry Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry Paderborn University Warburger Str. 100 33098 Paderborn Germany
| |
Collapse
|
9
|
“Linear diffusion domain” approach for modeling the kinetics of electrodeposition: a two-dimensional study. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04361-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Magnussen OM. Atomic‐Scale Insights into Electrode Surface Dynamics by High‐Speed Scanning Probe Microscopy. Chemistry 2019; 25:12865-12883. [DOI: 10.1002/chem.201901709] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Olaf M. Magnussen
- Institute of Experimental and Applied PhysicsKiel University Olshausenstr. 40 24098 Kiel Germany
| |
Collapse
|