1
|
Srikrajang S, Kabir L, Sagadevan S, Wijaya K, Oh WC. Representative modeling of biocompatible MXene nanocomposites for next-generation biomedical technologies and healthcare. J Mater Chem B 2025; 13:2912-2951. [PMID: 39886804 DOI: 10.1039/d4tb02478h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
MXenes are a class of 2D transition metal carbides and nitrides (Mn+1XnT) that have attracted significant interest owing to their remarkable potential in various fields. The unique combination of their excellent electromagnetic, optical, mechanical, and physical properties have extended their applications to the biological realm as well. In particular, their ultra-thin layered structure holds specific promise for diverse biomedical applications. This comprehensive review explores the synthesis methods of MXene composites, alongside the biological and medical design strategies that have been employed for their surface engineering. This review delves into the interplay between these strategies and the resulting properties, biological activities, and unique effects at the nano-bio-interface. Furthermore, the latest advancements in MXene-based biomaterials and medicine are systematically summarized. Further discussion on MXene composites designed for various applications, including biosensors, antimicrobial agents, bioimaging, tissue engineering, and regenerative medicine, are also provided. Finally, with a focus on translating research results into real-world applications, this review addresses the current challenges and exciting future prospects of MXene composite-based biomaterials.
Collapse
Affiliation(s)
- Siwaluk Srikrajang
- Department of Physical Therapy, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Latiful Kabir
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam 31962, Republic of Korea.
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Karna Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam 31962, Republic of Korea.
| |
Collapse
|
2
|
Suresh S, Celshia S, Selvamani M, Suresh V, Hussein MA. Synthesis and Characterization of Mn₂O₃ and Its Electrochemical Properties in Relation to Dopamine. Cureus 2024; 16:e67890. [PMID: 39328706 PMCID: PMC11426951 DOI: 10.7759/cureus.67890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Manganese(III) oxide (Mn2O3) is a transition metal oxide that has gained significant attention due to its unique properties and potential applications in various fields, including catalysis, energy storage, and sensing. Dopamine, a neurotransmitter in the human brain, plays a crucial role in regulating several physiological processes as its detection is important in areas such as medical diagnostics and neurochemistry. The synthesis of Mn2O3 can be achieved through methods like precipitation, hydrothermal synthesis, or solid-state reactions. Aims The objective of this study is to synthesize Mn2O3, characterize its structure and morphology, and investigate its electrochemical properties toward dopamine. Materials and methods Materials used included manganese sulfate (MnSO4), potassium permanganate, deionized water, a Teflon steel autoclave, and a hot air oven. For the synthesis of a hierarchical Mn2O3 rodlike shape, MnSO4•H2O (8 mmol) and potassium permanganate (8 mmol) were firstly dissolved in deionized water (40 mL) by stirring, which was then transferred to a Teflon-lined stainless steel autoclave (50 mL). This autoclave was sealed and maintained at 90℃ for six hours. Finally, the resultant Mn2O3 rods were collected by filtration, washed with distilled water and absolute ethanol for several times, and dried in air at 80℃. Mn2O3 rods were obtained by the calcinations of the as-prepared Mn2O3 rods at different temperatures. When Mn2O3 rods were treated at 600℃ for six hours in air, Mn2O3 rods could be collected. Results The X-ray diffraction (XRD) analysis shows that Mn2O3 is crystalline in structure and it matched with that of the Joint Committee on Powder Diffraction Standards (JCPDS). The field emission scanning electron microscopy (FE-SEM) shows the morphology of Mn2O3 is a particle with the size of 100 nm. Cyclic voltammetry response shows that compared to bare electrode, modified electrode shows the higher current response which indicates the sensing ability of the dopamine molecule. Conclusion Mn₂O₃ was prepared using a hydrothermal technique, and the formation of nanoparticles (NPs) was verified through XRD, while the morphology was examined using FE-SEM. The Mn2O3 obtained was utilized in the detection of electrochemical dopamine, showing promise in the development of effective dopamine sensors. This study sets the stage for the integration of Mn₂O₃ into microfluidic systems for ongoing dopamine monitoring, presenting novel prospects for healthcare and neurochemical investigations. The exploration of various surface engineering approaches may additionally improve the electrochemical capabilities of Mn₂O₃ for the advancement of sensor technology.
Collapse
Affiliation(s)
- Sanjana Suresh
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Sherin Celshia
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Muthamizh Selvamani
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Mohammed Asif Hussein
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Elugoke SE, Ganesh P, Kim S, Ebenso EE. Common Transition Metal Oxide Nanomaterials in Electrochemical Sensors for the Diagnosis of Monoamine Neurotransmitter‐Related Disorders. ChemElectroChem 2024; 11. [DOI: 10.1002/celc.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 07/23/2024]
Abstract
AbstractMonoamine neurotransmitters are essential for learning, mental alertness, emotions, and blood flow, among other functions. Fatal neurological disorders that signal the imbalance of these biomolecules in the human system include Parkinson's disease, myocardial infarction, Alzheimer's disease, hypoglycemia, Schizophrenia, and a host of other ailments. The diagnosis of these monoamine neurotransmitter‐related conditions revolves around the development of analytical tools with high sensitivity for the four major monoamine neurotransmitters namely dopamine, epinephrine, norepinephrine, and serotonin. The application of electrochemical sensors made from notable metal oxide nanoparticles or composites containing the metal oxide nanoparticles for the detection of these monoamine neurotransmitters was discussed herein. More importantly, the feasibility of the application of the ZnO, CuO, and TiO2 nanoparticle‐based electrochemical sensors for a comprehensive diagnosis of monoamine neurotransmitter‐related conditions was critically investigated in this review.
Collapse
Affiliation(s)
- Saheed E. Elugoke
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| | - Pattan‐Siddappa Ganesh
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Sang‐Youn Kim
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Eno E. Ebenso
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| |
Collapse
|
4
|
Sakthivel R, Lin YC, Yu MC, Dhawan U, Liu X, Chen JC, Tung CW, Chung RJ. A sensitive sandwich-type electrochemical immunosensor using nitrogen-doped graphene/metal-organic framework-derived CuMnCoO x and Au/MXene for the detection of breast cancer biomarker. Colloids Surf B Biointerfaces 2024; 234:113755. [PMID: 38241894 DOI: 10.1016/j.colsurfb.2024.113755] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
In terms of cancer-related deaths among women, breast cancer (BC) is the most common. Clinically, human epidermal growth receptor 2 (HER2) is one of the most commonly used diagnostic biomarkers for facilitating BC cell proliferation and malignant growth. In this study, a disposable gold electrode (DGE) modified with gold nanoparticle-decorated Ti3C2Tx (Au/MXene) was utilized as a sensing platform to immobilize the capturing antibody (Ab1/Au/MXene). Subsequently, nitrogen-doped graphene (NG) with a metal-organic framework (MOF)-derived copper-manganese-cobalt oxide, tagged as NG/CuMnCoOx, was used as a probe to label the detection antibody (Ab2). A sandwich-type immunosensor (NG/CuMnCoOx/Ab2/HER2-ECD /Ab1/Au/MXene/DGE) was developed to quantify HER2-ECD. NG/CuMnCoOx enhances the conductivity, electrocatalytic active sites, and surface area to immobilize Ab2. In addition, Au/MXene facilitates electron transport and captures more Ab1 on its surface. Under optimal conditions, the resultant immunosensor displayed an excellent linear range of 0.0001 to 50.0 ng. mL-1. The detection limit was 0.757 pg·mL-1 with excellent selectivity, appreciable reproducibility, and high stability. Moreover, the applicability for determining HER2-ECD in human serum samples indicates its ability to monitor tumor markers clinically.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan; Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Min-Chin Yu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Catholic Mercy Hospital, Catholic Mercy Medical Foundation, Hsinchu, Taiwan; Medical Device Innovation & Translation Centre, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ching-Wei Tung
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan.
| |
Collapse
|
5
|
Li Y, Yin Y, Xie F, Zhao G, Han L, Zhang L, Lu T, Amin MA, Yamauchi Y, Xu X, Zhu G, Pan L. Polyaniline coated MOF-derived Mn 2O 3 nanorods for efficient hybrid capacitive deionization. ENVIRONMENTAL RESEARCH 2022; 212:113331. [PMID: 35472462 DOI: 10.1016/j.envres.2022.113331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Mn-based oxides are efficient pseudocapacitive electrode materials and have been investigated for capacitive deionization (CDI). However, their poor conductivity seriously affects their desalination performance. In this work, polyaniline coated Mn2O3 nanorods (PANI/Mn2O3) are synthesized by oxidizing a Mn-based metal organic framework (MOF) and subsequent in-situ chemical polymerization. The polyaniline not only acts as a conductive network for faradaic reactions of Mn2O3, but also enhances the desalination rate. PANI/Mn2O3 has a specific capacitance of 87 F g-1 (at 1 A g-1), superior to that of Mn2O3 nanorod (52 F g-1 at 1 A g-1). The hybrid CDI cell constructed with a PANI/Mn2O3 cathode and an active carbon anode shows a high desalination capacity of 21.6 mg g-1, superior recyclability with only 11.3% desalination capacity decay after 30 desalination cycles and fast desalination rate of 2.2 mg g-1 min-1. PANI/Mn2O3 is a potential candidate for high performance CDI applications.
Collapse
Affiliation(s)
- Yanjiang Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Yufeng Yin
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Fengting Xie
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Guangzhen Zhao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Lu Han
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Li Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Zuo J, Shen Y, Gao J, Song H, Ye Z, Liang Y, Zhang S. Highly sensitive determination of paracetamol, uric acid, dopamine, and catechol based on flexible plastic electrochemical sensors. Anal Bioanal Chem 2022; 414:5917-5928. [PMID: 35723722 DOI: 10.1007/s00216-022-04157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
Flexible sensing is an alternative to traditional sensing and possesses good flexibility and wearability. Intrinsically conductive polymers, particularly poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), have received significant attention due to their high mechanical flexibility and good biocompatibility. Here, we report the design of highly conductive and electrochemically active PEDOT:PSS-coated plastic substrate electrodes by combining N-doped graphene (NG) or S-doped graphene (SG) with methanesulfonic acid-treated PEDOT:PSS (denoted as NG-f-MSA-PEDOT:PSS/PET and SG-f-MSA-PEDOT:PSS/PET) by a simple drop-coating method. At room temperature, the NG-f-MSA-PEDOT:PSS/PET electrode demonstrated the lowest detection limits of 17.09, 33.84, 28.30, and 44.96 nM for paracetamol, uric acid, dopamine, and catechol (S/N = 3), respectively. The NG-f-MSA-PEDOT:PSS/PET electrode had good anti-interference ability and reproducibility without employing expensive noble metals and requiring much effort to polish the surface of traditional glass carbon electrodes. Most importantly, this film electrode could maintain a stable electrochemical response under different bending and crease states and had excellent mechanical stability and flexibility.
Collapse
Affiliation(s)
- Jiabao Zuo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Yuliang Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Juanjuan Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Haiou Song
- School of Environment, Nanjing Normal University, Nanjing, 210097, People's Republic of China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Ying Liang
- Nanjing Huachuang Institute of Environmental Technology Co., Ltd., Nanjing, 211106, People's Republic of China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
7
|
Wu S, Wang H, Zhao B, Cao T, Ma J, Liu L, Tong Z. Construction of cationic polyfluorinated azobenzene/reduced graphene oxide for simultaneous determination of dopamine, uric acid and ascorbic acid. Talanta 2022; 237:122986. [PMID: 34736705 DOI: 10.1016/j.talanta.2021.122986] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
A highly sensitive cationic polyfluorinated azobenzene/reduced graphene oxide (C3F7-azo+/RGO) nanocomposite electrochemical sensor for simultaneous detection of dopamine (DA), ascorbic acid (AA) and uric acid (UA) was successfully synthesized using a facile exfoliation/restacking method. The nanocomposite is self-assembled from oppositely charged graphene oxide nanosheets (GO) and polyfluorinated azobenzene cations (C3F7-azo+), and then obtained by electrochemical reduction. The structure and electrochemical properties were characterized by X-ray diffraction (XRD), energy dispersive spectrometer analysis (EDS), transmission electron microscope (TEM) and scanning electron microscope (SEM). The electrochemical property of C3F7-azo+/RGO was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). It can be clearly seen from experimental results that C3F7-azo+/RGO-modified electrode (C3F7-azo+/RGO/GCE) can detect DA, AA and UA simultaneously, and has good stability and anti-interference performance. The detection limits are 65 nM, 8 nM and 11 nM for DA, AA and UA in the ranges 57.28-134.28 μM, 0.04-6.01 μM, 9.23-23.45 μM, respectively.
Collapse
Affiliation(s)
- Shining Wu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haoran Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Bo Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Tongtong Cao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Juanjuan Ma
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lin Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhiwei Tong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China; SORST, Japan Science and Technology Agency (JST), Kawaguchi Center Building 4-1-8, Kawaguchi-shi, Saitama, 332-0012, Japan.
| |
Collapse
|
8
|
Mansoor MA, Hamzah K, Naeem R, Zubir MNBM, Yahaya NA, Yusof FB, Rozali SB, Aspanut ZB, Ming HN. A Tri-Metallic (Mn–Co–Ti) Oxide Photoanode with Improved Photo-Conversion Efficiency. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621060139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Joseph T, Thomas J, Thomas T, Thomas N. Selective nanomolar electrochemical detection of serotonin, dopamine and tryptophan using TiO 2/RGO/CPE – influence of reducing agents. NEW J CHEM 2021. [DOI: 10.1039/d1nj03697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TiO2/RGO nanocomposites were synthesised via a simple one-pot hydrothermal method and used as a modifier in carbon paste electrode for the sensitive determination of serotonin.
Collapse
Affiliation(s)
- Teena Joseph
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| | - Jasmine Thomas
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| | - Tony Thomas
- Department of Chemistry, Deva Matha College, Kuravilangad, Kottayam, Kerala, India
| | - Nygil Thomas
- Department of Chemistry, Nirmalagiri College, Kannur, Kerala, India
| |
Collapse
|
10
|
Grace AA, Thillaiarasi S, Dharuman V. Binary Metal Oxide Adsorbed Graphene Modified Glassy Carbon Electrode for Detection of Riboflavin. ELECTROANAL 2020. [DOI: 10.1002/elan.202060429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Arockiajawahar Anancia Grace
- Molecular Electronics Laboratory Department of Bioelectronics and Biosensors Science Campus Alagappa University Karaikudi 630 004 India
- Department of Industrial Chemistry Alagappa University Karaikudi 630 003 India
| | - Sukumar Thillaiarasi
- Department of Chemistry PSGR Krishnammal college for women Coimbatore 641004 India
| | - Venkataraman Dharuman
- Molecular Electronics Laboratory Department of Bioelectronics and Biosensors Science Campus Alagappa University Karaikudi 630 004 India
| |
Collapse
|
11
|
Vermisoglou EC, Jakubec P, Malina O, Kupka V, Schneemann A, Fischer RA, Zbořil R, Jayaramulu K, Otyepka M. Hierarchical Porous Graphene-Iron Carbide Hybrid Derived From Functionalized Graphene-Based Metal-Organic Gel as Efficient Electrochemical Dopamine Sensor. Front Chem 2020; 8:544. [PMID: 32850616 PMCID: PMC7409389 DOI: 10.3389/fchem.2020.00544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
A metal-organic gel (MOG) similar in constitution to MIL-100 (Fe) but containing a lower connectivity ligand (5-aminoisophthalate) was integrated with an isophthalate functionalized graphene (IG). The IG acted as a structure-directing templating agent, which also induced conductivity of the material. The MOG@IG was pyrolyzed at 600°C to obtain MGH-600, a hybrid of Fe/Fe3C/FeOx enveloped by graphene. MGH-600 shows a hierarchical pore structure, with micropores of 1.1 nm and a mesopore distribution between 2 and 6 nm, and Brunauer-Emmett-Teller surface area amounts to 216 m2/g. Furthermore, the MGH-600 composite displays magnetic properties, with bulk saturation magnetization value of 130 emu/g at room temperature. The material coated on glassy carbon electrode can distinguish between molecules with the same oxidation potential, such as dopamine in presence of ascorbic acid and revealed a satisfactory limit of detection and limit of quantification (4.39 × 10-7 and 1.33 × 10-6 M, respectively) for the neurotransmitter dopamine.
Collapse
Affiliation(s)
- Eleni C. Vermisoglou
- Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Olomouc, Czechia
| | - Petr Jakubec
- Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Olomouc, Czechia
| | - Ondřej Malina
- Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Olomouc, Czechia
| | - Vojtěch Kupka
- Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Olomouc, Czechia
| | - Andreas Schneemann
- Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Centre, Technical University of Munich, Garching, Germany
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Dresden, Germany
| | - Roland A. Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Centre, Technical University of Munich, Garching, Germany
| | - Radek Zbořil
- Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Olomouc, Czechia
| | - Kolleboyina Jayaramulu
- Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Olomouc, Czechia
- Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Centre, Technical University of Munich, Garching, Germany
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, India
| | - Michal Otyepka
- Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
12
|
Vijayaprasath G, Habibulla I, Dharuman V, Balasubramanian S, Ganesan R. Fabrication of Gd 2O 3 Nanosheet-Modified Glassy Carbon Electrode for Nonenzymatic Highly Selective Electrochemical Detection of Vitamin B2. ACS OMEGA 2020; 5:17892-17899. [PMID: 32743160 PMCID: PMC7391253 DOI: 10.1021/acsomega.9b04284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
A novel Gd2O3 nanosheet was synthesized by the template-free chemical coprecipitation method. Interestingly, upon calcination at 600 °C, nanoparticles were transformed into a nanosheet, as observed from field emission scanning electron microscopy (FESEM) images. An increase in the calcination temperature to 600 °C increases the particle size to 50 nm, which results in aggregation. A sheetlike Gd2O3 exhibits superparamagnetism from 300 K. The highly selective nonenzymatic sensing of riboflavin (RF) was studied using a modified glassy carbon electrode with Gd2O3 nanosheets, and its various applications were made possible by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The redox behavior of the RF was determined. The newly fabricated sensor showed high sensitivity, stability, and reproducibility and was also tested with a commercial vitamin B2 tablet and a milk powder sample.
Collapse
Affiliation(s)
- Gandhi Vijayaprasath
- PG
& Research, Department of Physics, Sree
Sevugan Annamalai College, Devakottai 630 303, Tamil Nadu, India
- Department
of Physics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
- CSIR-Central
Electrochemical Research Institute, Karaikudi 630003, Tamil
Nadu, India
| | - Imran Habibulla
- Department
of Bioelectronics and Biosensors, Alagappa
University, Karaikudi 630003, India
| | - Venkataraman Dharuman
- Department
of Bioelectronics and Biosensors, Alagappa
University, Karaikudi 630003, India
| | | | - Ravi Ganesan
- Department
of Physics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
13
|
Li Z, Kang Q, Chen L, Zhang B, Zou G, Shen D. Enhancing aqueous stability and radiative-charge-transfer efficiency of CsPbBr3 perovskite nanocrystals via conductive silica gel coating. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|