1
|
Wang Y, Sun Y, Long Q, Liu J, Guo D, Zhu Z, Zhang H. Fabricating stable protective layer on orthorhombic tungsten oxide anode for long-lifespan pseudocapacitors by trace of aluminum ion electrolyte additives. J Colloid Interface Sci 2025; 689:137227. [PMID: 40056683 DOI: 10.1016/j.jcis.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Orthorhombic tungsten oxide (WO3·H2O) has been considered as a promising anode material due to its layered crystal structure and high capacity. However, the instability of its crystal structure usually results in poor cyclic stability of the battery/capacitor. Herein, a novel strategy of introducing aluminum ion (Al3+) additives for designing hybrid electrolyte is demonstrated to enhance the cycling stability of WO3·H2O. Aluminum ions may participate in the redox reaction and contribute extra capacitance. More importantly, the Al3+ ions can facilitate fast phase transformation of metastable orthorhombic tungsten oxides to stable monoclinic phase, but also participate in the construction of stable protective layer during the long-term cycling, forming a protective layer at the surface of tungsten oxide for alleviating the dissolution and structural damage. The WO3·H2O is electrodeposited on the exfoliated graphite foil (Ex-GF) and shows a specific capacitance of 395 mF cm-2 at 2 mA cm-2 in the LiCl + AlCl3 hybrid electrolyte (pH = 2.93), and the capacitance remains 91.8 % after 10,000 charge/discharge cycles, indicating that the WO3·H2O/Ex-GF electrode material exhibits excellent stability in supercapacitors. The density functional theory (DFT) calculations further demonstrate whether the adsorption energy or intercalation energy of Li+ at the monoclinic WO3 is lower than the orthorhombic WO3·H2O. This result suggests that the electrochemical performance of WO3·H2O, which operates on a pseudocapacitive reaction mechanism, can be enhanced through the phase transformation from the orthorhombic phase to the monoclinic phase during the cycling. Hence, this ion additive approach can adjust the interface composition and protect internal active material, and can be extended to the stability improvement of other metal oxide electrodes.
Collapse
Affiliation(s)
- Yunan Wang
- School of Metallurgy, Northeastern University, Shenyang 110819, China; Department of Chemistry, Northeastern University, Shenyang 110819, China
| | - Yingying Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, China
| | - Qian Long
- School of Metallurgy, Northeastern University, Shenyang 110819, China; Department of Chemistry, Northeastern University, Shenyang 110819, China
| | - Jie Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Di Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, China.
| | - Zhengwang Zhu
- School of Metallurgy, Northeastern University, Shenyang 110819, China.
| | - Haifeng Zhang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
2
|
Shi K, Chen Z, Sun W. Controlling of Crystal Facets by Dysprosium-Modified WO 3/Carbon Nanofibers Enhance the Flexible Supercapacitor Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405769. [PMID: 39340272 DOI: 10.1002/smll.202405769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Dysprosium-modified tungsten oxide/carbon nanofibers (Dy-WO3/PCNFs) are fabricated via electrospinning combined with high-temperature calcination to synthesize a flexible, self-supporting electrode material that does not require a conductive agent or binder. XRD and TEM analyses showed that introducing dysprosium promoted the preferential growth of WO3 crystals along the preponderance crystal planes involved in the electrochemical reaction, enhancing the exposure of the (002) and (200) crystal planes. Furthermore, DFT calculations demonstrated that the incorporation of Dy resulted in enhanced adsorption of Dy-WO3 by PCNFs, with an adsorption energy of -1.21 eV. The Bader charge results indicate a transfer of 1.70 |e| from PCNFs to Dy-WO3. DFT calculations demonstrate that strong adsorption facilitates charge adsorption/desorption, which contributes to charge transfer and enhances storage capacity. The prepared Dy-WO3/PCNFs exhibited a high specific capacitance (557.28 F g-1 at 0.5 A g-1). Supercapacitors assembled with Dy-WO3/PCNFs as the positive electrode and CNFs as the negative electrode have high energy density (29.8 Wh kg-1 at a power density of 363.48 W kg-1). This study demonstrates the successful synthesis of Dy-WO3/PCNFs with exceptional electrochemical properties and offers significant insights into the design and application of flexible electrodes by incorporating dysprosium to modulate the crystal surface of WO3.
Collapse
Affiliation(s)
- Kaiyan Shi
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Street, Hohhot, Inner Mongolia, 010051, P. R. China
| | - Zefeng Chen
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Street, Hohhot, Inner Mongolia, 010051, P. R. China
| | - Weiyan Sun
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Street, Hohhot, Inner Mongolia, 010051, P. R. China
| |
Collapse
|
3
|
Sengupta S, Pramanik A, de Oliveira CC, Chattopadhyay S, Pieshkov T, Autreto PADS, Ajayan PM, Kundu M. Deciphering Sodium-Ion Storage: 2D-Sulfide versus Oxide Through Experimental and Computational Analyses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403321. [PMID: 38837576 DOI: 10.1002/smll.202403321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Transition metal derivatives exhibit high theoretical capacity, making them promising anode materials for sodium-ion batteries. Sulfides, known for their superior electrical conductivity compared to oxides, enhance charge transfer, leading to improved electrochemical performance. Here, a hierarchical WS2 micro-flower is synthesized by thermal sulfurization of WO3. Comprising interconnected thin nanosheets, this structure offers increased surface area, facilitating extensive internal surfaces for electrochemical redox reactions. The WS2 micro-flower demonstrates a specific capacity of ≈334 mAh g-1 at 15 mA g-1, nearly three times higher than its oxide counterpart. Further, it shows very stable performance as a high-temperature (65 °C) anode with ≈180 mAh g-1 reversible capacity at 100 mA g-1 current rate. Post-cycling analysis confirms unchanged morphology, highlighting the structural stability and robustness of WS2. DFT calculations show that the electronic bandgap in both WS2 and WO3 increases when going from the bulk to monolayers. Na adsorption calculations show that Na atoms bind strongly in WO3 with a higher energy diffusion barrier when compared to WS2, corroborating the experimental findings. This study presents a significant insight into electrode material selection for sodium-ion storage applications.
Collapse
Affiliation(s)
- Shilpi Sengupta
- Electrochemical Energy Storage Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Tamil Nadu, 603203, India
| | - Atin Pramanik
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| | - Caique Campos de Oliveira
- Center for Human and Natural Sciences (CCNH), Federal University of ABC (UFABC), Avenida dos Estados 5000, Santo André, São Paulo, Brazil
| | - Shreyasi Chattopadhyay
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| | - Tymofii Pieshkov
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| | - Pedro Alves da Silva Autreto
- Center for Human and Natural Sciences (CCNH), Federal University of ABC (UFABC), Avenida dos Estados 5000, Santo André, São Paulo, Brazil
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas, 77005, USA
| | - Manab Kundu
- Electrochemical Energy Storage Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Tamil Nadu, 603203, India
- Nanomaterials for Energy Storage and Conversion INL, International Iberian Nanotechnology Laboratory Av. Mestre José Veiga, Braga, 4715-330, Portugal
| |
Collapse
|
4
|
Kim H, Lee J, Kong H, Park T, Kim TS, Yang H, Yeo J. Laser-Printed Photoanode: Femtosecond Laser-Induced Crystalline Phase Transformation of WO 3 Nanorods for Space-Efficient and Flexible Thin-Film Solar Water-Splitting Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402051. [PMID: 38733227 DOI: 10.1002/smll.202402051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Despite its potential for clean hydrogen harvesting, photoelectrochemical (PEC) water-splitting cells face challenges in commercialization, particularly related its harvesting performance and productivity at an industrial scale. Herein, a facile fabrication method of flexible thin-film photoanode for PEC water-splitting to overcome these limitations, based on laser processing technologies, is proposed. Laser-induced graphene, a carbon structure produced through direct laser writing carbonization (DLWC), plays a dual role: a flexible and stable current collector and a substrate for the hydrothermal synthesis of tungsten trioxide (WO3) nanorods (NRs). To facilitate water-splitting, a femtosecond-pulsed laser (fs laser) is focused on the WO3 NRs, converting their crystalline phase from pristine orthorhombic to monoclinic structure without thermal damage. With NiFe layered double hydroxide (LDH) catalyst, the flexible thin-film photoanode exhibits good PEC performance (1.46 mA cm-2 at 1.23 VRHE) and retains ≈90% of its performance after 3000 bending cycles. With its excellent mechanical properties, the flexible photoanode can be operated in various shapes with different curvatures, enabling space-efficient PEC water-splitting by loading larger photoanode within a given space. This study is expected to contribute to the advancement of large-scale solar water-splitting cells, introducing a new approach to enhance H2/O2 production and expand its application range.
Collapse
Affiliation(s)
- Hyeonwoo Kim
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jehoon Lee
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Heejung Kong
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Taeuk Park
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Tae Sung Kim
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Haechang Yang
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Junyeob Yeo
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
- Department of Hydrogen & Renewable Energy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| |
Collapse
|
5
|
Sengupta S, Sudakar C, Kundu M. 3D-engineered WO 3 microspheres assembled by 2D nanosheets with superior sodium storage capacity. RSC Adv 2024; 14:15706-15712. [PMID: 38746841 PMCID: PMC11091957 DOI: 10.1039/d4ra01800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 08/29/2024] Open
Abstract
Because of the inadequate sodium storage capacity of graphite, the exploration of high-performance SIB anodes is a crucial step forward. Herein, we report the hydrothermally synthesized self-assembled interconnected nanosheets of WO3 microspheres possessing admirable sodium storage in terms of cycling stability and acceptable rate capability. Benefitting from the interconnected nature of the nanosheets with a hollow interior, the WO3 microspheres exhibited a high sodiation capacity of 431 mA h g-1 at 100 mA g-1 and an excellent rate performance of 60 mA h g-1 at 500 mA g-1 with an impressive coulombic efficiency of around 99%. Importantly, even after continuous cycling with increasing current densities, a specific capacity as high as 220 mA h g-1 could be recovered at a current density of 50 mA g-1, suggesting excellent sodium storage reversibility.
Collapse
Affiliation(s)
- Shilpi Sengupta
- Electrochemical Energy Storage Laboratory, Department of Chemistry, SRM Institute of Science and Technology Chennai 603203 Tamil Nadu India
| | - C Sudakar
- Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - Manab Kundu
- Electrochemical Energy Storage Laboratory, Department of Chemistry, SRM Institute of Science and Technology Chennai 603203 Tamil Nadu India
| |
Collapse
|
6
|
Ju H, Tang Q, Xu Y, Bai X, Pu C, Liu T, Liu S, Zhang L. Prussian blue analogue-derived hollow metal oxide heterostructure for high-performance supercapacitors. Dalton Trans 2023; 52:12948-12957. [PMID: 37646327 DOI: 10.1039/d3dt01966g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Supercapacitors (SCs) have been the subject of considerable interest because of their distinct advantages. The performance of SCs is directly affected by the electrode materials. Metal oxides derived from Prussian blue analogues (PBAs) are often used as electrode materials for SCs. Herein, we developed a multi-step strategy to fabricate ternary hollow metal oxide (CuO/NiO/Co3O4) heterostructures. The core-shell structured PBA (NiHCC@CuHCC) with Ni-based PBA (NiHCC) as the core and Cu-based PBA (CuHCC) as the shell was prepared by a crystal seed method. The ternary metal oxide (CuO/NiO/Co3O4) with a hollow structure was obtained by calcinating NiHCC@CuHCC. The prepared CuO/NiO/Co3O4 demonstrates an excellent specific capacitance of 262.5 F g-1 at 1 A g-1, which is 27.4% and 16.2% higher than those of CuO/Co3O4 and NiO/Co3O4, respectively. In addition, the material showed outstanding cycling stability with a capacitance retention of 107.9% after 3000 cycles. The two-electrode system constructed with CuO/NiO/Co3O4 and nitrogen-doped graphene hydrogel (NDGH) demonstrates a stable and high energy density of 27.1 W h kg-1 at a power density of 1037.5 W kg-1. The capacitance retention rate was 100.7% after 4000 cycles. The reason for the excellent electrochemical properties could be the synergistic effect of the introduced heterojunction of CuO/NiO, the hollow structure, and various metal oxides. This strategy can greatly inspire the construction of SC electrodes.
Collapse
Affiliation(s)
- Hui Ju
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
- Research Centre of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Qianqian Tang
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Yong Xu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Xiaojing Bai
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Chenjin Pu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Tongchen Liu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Shuxin Liu
- College of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China.
| | - Lin Zhang
- Research Centre of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
| |
Collapse
|
7
|
Mineo G, Bruno E, Mirabella S. Advances in WO 3-Based Supercapacitors: State-of-the-Art Research and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13081418. [PMID: 37111003 PMCID: PMC10142086 DOI: 10.3390/nano13081418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Electrochemical energy storage devices are one of the main protagonists in the ongoing technological advances in the energy field, whereby the development of efficient, sustainable, and durable storage systems aroused a great interest in the scientific community. Batteries, electrical double layer capacitors (EDLC), and pseudocapacitors are characterized in depth in the literature as the most powerful energy storage devices for practical applications. Pseudocapacitors bridge the gap between batteries and EDLCs, thus supplying both high energy and power densities, and transition metal oxide (TMO)-based nanostructures are used for their realization. Among them, WO3 nanostructures inspired the scientific community, thanks to WO3's excellent electrochemical stability, low cost, and abundance in nature. This review analyzes the morphological and electrochemical properties of WO3 nanostructures and their most used synthesis techniques. Moreover, a brief description of the electrochemical characterization methods of electrodes for energy storage, such as Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD), and Electrochemical Impedance Spectroscopy (EIS) are reported, to better understand the recent advances in WO3-based nanostructures, such as pore WO3 nanostructures, WO3/carbon nanocomposites, and metal-doped WO3 nanostructure-based electrodes for pseudocapacitor applications. This analysis is reported in terms of specific capacitance calculated as a function of current density and scan rate. Then we move to the recent progress made for the design and fabrication of WO3-based symmetric and asymmetric supercapacitors (SSCs and ASCs), thus studying a comparative Ragone plot of the state-of-the-art research.
Collapse
Affiliation(s)
- Giacometta Mineo
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania, Italy; (G.M.); (E.B.)
- CNR-IMM, Università di Catania, via S. Sofia 64, 95123 Catania, Italy
| | - Elena Bruno
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania, Italy; (G.M.); (E.B.)
- CNR-IMM, Università di Catania, via S. Sofia 64, 95123 Catania, Italy
| | - Salvo Mirabella
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania, Italy; (G.M.); (E.B.)
- CNR-IMM, Università di Catania, via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
8
|
Facile synthesis of novel poly(1H-benzoindole)/WO3 nanocomposites with enhanced energy storage capability and its application in high-performance supercapacitor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Partially carbonized tungsten oxide as electrode material for asymmetric supercapacitors. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Electrochromic and Capacitive Properties of WO3 Nanowires Prepared by One-Step Water Bath Method. COATINGS 2022. [DOI: 10.3390/coatings12050595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this paper, WO3 nanowires were successfully synthesized via a one-step water bath method at an appropriate temperature. The XRD (Energy Dispersive Spectrometer), SEM (Scanning electron microscope), TEM (Transmission Electron Microscope) and other characterization methods proved that the synthesized product was WO3, and the product of water bath reaction for 9 h showed the nanowires’ structure. The nanowires were evenly distributed, and the length ranged from 2 μm to 4 μm. The results showed that the nanowires had excellent light transmittance (66%), a very short response time (1.2 s, 2 s) and excellent color rendering efficiency (115.2 cm2 C−1) at 650 nm. The electrochemical performance test showed that the specific capacity of the WO3 nanowires was up to 565 F/g at 1 A/g. Change the different current densities and cycle 100 times, then return to the initial current density, accounting for 99% of the initial specific capacity of 565 F/g. We used this method for the first time to prepare tungsten oxide nanowires and investigated the bifunctional properties of the material, namely the electrochromic and capacitive properties. All of these data indicate that WO3 nanorods have excellent electrochromic and electrochromic properties and have potential market prospects in the fields of electrochromic glass, variable glasses, advertising, and supercapacitors.
Collapse
|
11
|
Han W, Zhong M, Ju H, Chen D, Yuan L, Liu X, Wang C. Synthesis of oxygen‐deficient WO3‐x nanoplates and hollow microspheres decorated on carbon cloth for supercapacitor. ChemElectroChem 2022. [DOI: 10.1002/celc.202200122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenjing Han
- China Academy of Engineering Physics Research Center of Laser Fusion 621000 Mianyang CHINA
| | - Minglong Zhong
- China Academy of Engineering Physics Research Center of Laser Fusion 7 CHINA
| | - Hui Ju
- Mianyang Normal University: Mianyang Teachers' College College of Chemistry and Chemical Engineering CHINA
| | - Deping Chen
- China Academy of Engineering Physics Research Center of Laser Fusion 7 CHINA
| | - Lei Yuan
- China Academy of Engineering Physics Research Center of Laser Fusion 7 CHINA
| | - Xudong Liu
- China Academy of Engineering Physics Research Center of Laser Fusion 7 CHINA
| | - Chaoyang Wang
- China Academy of Engineering Physics Research Center of Laser Fusion 7 CHINA
| |
Collapse
|
12
|
Nasreen F, Anwar AW, Majeed A, Ahmad MA, Ilyas U, Ahmad F. High performance and remarkable cyclic stability of a nanostructured RGO-CNT-WO 3 supercapacitor electrode. RSC Adv 2022; 12:11293-11302. [PMID: 35425034 PMCID: PMC8996255 DOI: 10.1039/d1ra08413e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
One of the most pressing concerns in today's power networks is ensuring that consumers (both home and industrial) have access to efficient and long-lasting economic energy. Due to improved power accessibility and high specific capacitance without deterioration over long working times, supercapacitor-based energy storage systems can be a viable solution to this problem. So, here, tungsten trioxide (WO3) nanocomposites containing reduced graphene oxide and carbon nanotubes i.e. (RGO-WO3), (CNT-WO3), and (RGO-CNT-WO3), as well as pure WO3 nanostructures as electrode materials, were synthesized using a simple hydrothermal process. The monoclinic phase of WO3 with high diffraction peaks is visible in X-ray diffraction analysis, indicating good crystallinity of all electrode materials. Nanoflowers of WO3 were well-decorated on the RGO/CNTs conductive network in SEM micrographs. In a three-electrode system, the specific capacitance of the RGO-CNT-WO3 electrode is 691.38 F g-1 at 5 mV s-1 and 633.3 F g-1 at 2 A g-1, which is significantly higher than that of pure WO3 and other binary electrodes. Furthermore, at 2 A g-1, it achieves a coulombic efficiency of 98.4%. After 5000 cycles, RGO-CNT-WO3 retains 89.09% of its capacitance at 1000 mV s-1, indicating a promising rate capability and good cycling stability performance.
Collapse
Affiliation(s)
- Farah Nasreen
- Department of Physics, University of Engineering and Technology Lahore 548900 Pakistan
| | - Abdul Waheed Anwar
- Department of Physics, University of Engineering and Technology Lahore 548900 Pakistan
| | - Abdul Majeed
- Institute of Metal Research, Chinese Academy of Sciences Shenyang China
| | | | - Usman Ilyas
- Department of Physics, University of Engineering and Technology Lahore 548900 Pakistan
| | - Furqan Ahmad
- Department of Metallurgical Engineering, University of Engineering and Technology Lahore 548900 Pakistan
| |
Collapse
|
13
|
Nonenzymatic Lactic Acid Detection Using Cobalt Poly-phthalocyanine/Carboxylated Multiwalled Carbon Nanotube Nanocomposites Modified Sensor. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, a novel cobalt polyphthalocyanine/carboxylic acid functionalized multiwalled carbon nanotube nanocomposite (CoPPc/MWCNTs-COOH) to detect lactic acid was successfully fabricated. The nanocomposite was systematically characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible absorption spectroscopy, and X-ray photoelectron spectroscopy. The nanocomposite provided excellent conductivity for effective charge transfer and avoided the agglomeration of MWCNTs-COOH. The electrochemical surface area, diffusion coefficient and electron transfer resistance of the CoPPc/MWCNTs-COOH glassy carbon electrode (CoPPc/MWCNTs-COOH/GCE) were calculated as A = 0.49 cm2, D = 9.22 × 10−5 cm2/s, and Rct = 200 Ω, respectively. The lactic acid sensing performance of the CoPPc/MWCNTs-COOH was evaluated using cyclic voltammetry in 0.1 M PBS (pH 4). The results demonstrated that the novel electrode exhibited excellent electrochemical performance toward lactic acid reduction over a wide concentration range (10 to 240 μM), with a low detection limit (2 μM (S/N = 3)), and a reasonable selectivity against various interferents (ascorbic acid, uric acid, dopamine, sodium chloride, glucose, and hydrogen peroxide). Additionally, the electrode was also successfully applied to quantify lactic acid in rice wine samples, showing great promise for rapid monitoring applications.
Collapse
|
14
|
Bahaa A, Abdelkareem MA, Al Naqbi H, Yousef Mohamed A, Shinde PA, Yousef BAA, Sayed ET, Alawadhi H, Chae KJ, Al-Asheh S, Olabi AG. High energy storage quasi-solid-state supercapacitor enabled by metal chalcogenide nanowires and iron-based nitrogen-doped graphene nanostructures. J Colloid Interface Sci 2022; 608:711-719. [PMID: 34634546 DOI: 10.1016/j.jcis.2021.09.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
Transition metal selenides (TMS) have excellent research prospects and significant attention in supercapacitors (SCs) owing to their high electrical conductivity, superior electrochemical activity and excellent structural stability. However, the commercial utilization of TMS remains challenge due to their elaborate synthesis. Present study designed a hierarchical cobalt selenide (CoSe2) nanowire array on Ni-foam to serve as a positive electrode for asymmetric SCs (ASCs). The nanowires-like morphology of CoSe2 was highly advantageous for SCs, as it offered enhanced electrical conductivity, plenty of surface sites, and short ion diffusion. The as-obtained, CoSe2 nanowire electrode demonstrated outstanding electrochemical features, with an areal capacity of 1.08 mAh cm-2 at 3 mA cm-2, high-rate performance (69.5 % at 50 mA cm-2), as well as outstanding stability after 10,000 cycles. The iron titanium nitride@nitrogen-doped graphene (Fe-TiN@NG) was prepared as a negative electrode to construct the ASCs cell. The obtained ASCs cell illustrated an energy density of 91.8 W h kg-1 at a power density of 281.4 W kg-1 and capacity retention of 94.6% over 10,000 cycles. The overall results provide a more efficient strategy to develop redox-ambitious active materials with a high capacity for advanced energy-storage systems.
Collapse
Affiliation(s)
- Ahmed Bahaa
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt.
| | - Halima Al Naqbi
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Ahmed Yousef Mohamed
- IPIT & Department of Physics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Pragati A Shinde
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Bashria A A Yousef
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt
| | - Hussain Alawadhi
- Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Sameer Al-Asheh
- Department of Chemical Engineering, American University of Sharjah, PO.Box 26666, Sharjah, United Arab Emirates
| | - A G Olabi
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates; Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
15
|
Zhao S, Dong C, Huang F. Proton-insertion-pseudocapacitance of tungsten bronze tunnel structure enhanced by transition metal ion anchoring. NANOSCALE 2021; 13:16790-16798. [PMID: 34605519 DOI: 10.1039/d1nr02384e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The one-dimensional channel array of hexagonal tungsten bronze (WO3) offers an electron transfer matrix, but its overwhelming H+ adsorption hinders it from being a good supercapacitor electrode material. Inspired by the Volcano plot on the relation between transition-metal and free energy of H-adsorption, we propose a new strategy to anchor transition metal ions (Zn2+, Cu2+, Ni2+, Ag+, Au3+ and Ir3+) into the WO3 lattice to improve proton-insertion based pseudocapacitance. Among the variety of transition metals, Zn2+ exhibits the optimal O 2p band center, which matches well with the best experimental capacitive behavior. The molar ratio of Zn/WO3 ranges from 0.2 to 0.6. The specific capacitance for Zn2+-anchored WO3 (390 F g-1) reaches 202% of that of WO3 (193 F g-1) at 0.5 A g-1 with robust stability (259 F g-1 at 3 A g-1 for 3000 cycles). Density functional theory confirms that O 2p is shifted down by the d-filling cations, which corresponds to alleviated O-H interaction and facilitated H+ desorption. The band tuning by transition-metal-ion incorporation would break new ground on developing high-capacitance metal oxide supercapacitors.
Collapse
Affiliation(s)
- Siwei Zhao
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.
| | - Chenlong Dong
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.
| | - Fuqiang Huang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| |
Collapse
|
16
|
RGO wrapped tungsten trioxide hydrate on CNT-modified carbon Cloth as self-supported high-rate lithium-ion battery electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
High Performance Asymmetric Supercapacitor Based on Hierarchical Carbon Cloth In Situ Deposited with h-WO 3 Nanobelts as Negative Electrode and Carbon Nanotubes as Positive Electrode. MICROMACHINES 2021; 12:mi12101195. [PMID: 34683250 PMCID: PMC8538798 DOI: 10.3390/mi12101195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022]
Abstract
Urchin-like tungsten oxide (WO3) microspheres self-assembled with nanobelts are deposited on the surface of the hydrophilic carbon cloth (CC) current collector via hydrothermal reaction. The WO3 nanobelts in the urchin-like microspheres are in the hexagonal crystalline phase, and their widths are around 30–50 nm. The resulted hierarchical WO3/CC electrode exhibits a capacitance of 3400 mF/cm2 in H2SO4 electrolyte in the voltage window of −0.5~0.2 V, which makes it an excellent negative electrode for asymmetric supercapacitors. To improve the capacitive performance of the positive electrode and make it comparable with that of the WO3/CC electrode, both the electrode material and the electrolyte have been carefully designed and prepared. Therefore, the hydrophilic CC is further coated with carbon nanotubes (CNTs) to create a hierarchical CNT/CC electrode via a convenient flame synthesis method, and a redox-active electrolyte containing an Fe2+/Fe 3+ couple is introduced into the half-cell system as well. As a result, the high performance of the asymmetric supercapacitor assembled with both the asymmetric electrodes and electrolytes has been realized. It exhibits remarkable energy density as large as 403 μW h/cm2 at 15 mW/cm2 and excellent cyclic stability after 10,000 cycles.
Collapse
|
18
|
Laser assisted anchoring of cadmium sulfide nanospheres into tungsten oxide nanosheets for enhanced photocatalytic and electrochemical energy storage applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Han W, Shi Q, Hu R. Advances in Electrochemical Energy Devices Constructed with Tungsten Oxide-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:692. [PMID: 33802013 PMCID: PMC8000231 DOI: 10.3390/nano11030692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023]
Abstract
Tungsten oxide-based materials have drawn huge attention for their versatile uses to construct various energy storage devices. Particularly, their electrochromic devices and optically-changing devices are intensively studied in terms of energy-saving. Furthermore, based on close connections in the forms of device structure and working mechanisms between these two main applications, bifunctional devices of tungsten oxide-based materials with energy storage and optical change came into our view, and when solar cells are integrated, multifunctional devices are accessible. In this article, we have reviewed the latest developments of tungsten oxide-based nanostructured materials in various kinds of applications, and our focus falls on their energy-related uses, especially supercapacitors, lithium ion batteries, electrochromic devices, and their bifunctional and multifunctional devices. Additionally, other applications such as photochromic devices, sensors, and photocatalysts of tungsten oxide-based materials have also been mentioned. We hope this article can shed light on the related applications of tungsten oxide-based materials and inspire new possibilities for further uses.
Collapse
Affiliation(s)
- Wenfang Han
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Qian Shi
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Renzong Hu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| |
Collapse
|
20
|
Barik R, Yadav AK, Jha SN, Bhattacharyya D, Ingole PP. Two-Dimensional Tungsten Oxide/Selenium Nanocomposite Fabricated for Flexible Supercapacitors with Higher Operational Voltage and Their Charge Storage Mechanism. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8102-8119. [PMID: 33591180 DOI: 10.1021/acsami.0c15818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present work elaborates the high-energy-density, stable, and flexible supercapacitor devices (full-cell configuration with asymmetric setup) based on a two-dimensional tungsten oxide/selenium (2D WO3/Se) nanocomposite. For this, the 2D WO3/Se nanocomposite synthesized by a hydrothermal method followed by air annealing was coated on a flexible carbon cloth current collector and combined separately with both 0.1 M H2SO4 and 1-butyl-3-methyl imidazolium tetrafluoroborate room temperature ionic liquid (BmimBF4 RTIL) as electrolyte. Different physicochemical characterization techniques, viz., transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, are utilized for phase confirmation and morphology identification of the obtained samples. The electrochemical analysis was used to evaluate charge storage mechanism. The half-cell configuration (three electrode system) in 0.1 M H2SO4 shows a specific capacitance of 564 F g-1 at 6 A g-1 current density, whereas with ionic liquid as electrolyte, a higher specific capacitance of 1650 F g-1 was obtained at a higher current of 40 mA and working potential of 4 V. Importantly, the asymmetric flexible supercapacitor device with PVA-H2SO4 electrolyte shows a working voltage of 1.7 V. A specific capacitance of 858 mF g-1 is obtained for the asymmetric electrode system with an energy density of 47 mWh kg-1 and a power density of 345 mW kg-1 at a current density of 0.2 A g-1.
Collapse
Affiliation(s)
- Rasmita Barik
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok Kumar Yadav
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - Shambhu Nath Jha
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - Dibyendu Bhattacharyya
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
21
|
Huang ZH, Li H, Li WH, Henkelman G, Jia B, Ma T. Electrical and Structural Dual Function of Oxygen Vacancies for Promoting Electrochemical Capacitance in Tungsten Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004709. [PMID: 33289327 DOI: 10.1002/smll.202004709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Intrinsic defects, including oxygen vacancies, can efficiently modify the electrochemical performance of metal oxides. There is, however, a limited understanding of how vacancies influence charge storage properties. Here, using tungsten oxide as a model system, an extensive study of the effects of structure, electrical properties, and charge storage properties of oxygen vacancies is carried out using both experimental and computational techniques. The results provide direct evidence that oxygen vacancies increase the interlayer spacing in the oxide, which suppress the structural pulverization of the material during electrolyte ion insertion and removal in prolonged stability tests. Specifically, no capacitive decay is detected after 30 000 cycles. The medium states and charge storage mechanism of oxygen-deficient tungsten oxide throughout electrochemical charging/discharging processes is studied. The enhanced rate capability of the oxygen-deficient WO3- x is attributed to improved charge storage kinetics in the bulk material. The WO3- x electrode exhibits the highest capacitance in reported tungsten-oxide based electrodes with comparable mass loadings. The capability to improve electrochemical capacitance performance of redox-active materials is expected to open up new opportunities for ultrafast supercapacitive electrodes.
Collapse
Affiliation(s)
- Zi-Hang Huang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Hao Li
- Department of Chemistry, The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Wen-Han Li
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Graeme Henkelman
- Department of Chemistry, The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Baohua Jia
- Centre for Translational Atomaterials, Faculty of Science Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
22
|
Huang SY, Le PA, Yen PJ, Lu YC, Sahoo SK, Cheng HW, Chiu PW, Tseng TY, Wei KH. Cathodic plasma–induced syntheses of graphene nanosheet/MnO2/WO3 architectures and their use in supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Shinde PA, Jun SC. Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage. CHEMSUSCHEM 2020; 13:11-38. [PMID: 31605458 DOI: 10.1002/cssc.201902071] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Current progress in the advancement of energy-storage devices is the most important factor that will allow the scientific community to develop resources to meet the global energy demands of the 21st century. Nanostructured materials can be used as effective electrodes for energy-storage devices because they offer various promising features, including high surface-to-volume ratios, exceptional charge-transport features, and good physicochemical properties. Until now, the successful research frontrunners have focused on the preparation of positive electrode materials for energy-storage applications; nevertheless, the electrochemical performance of negative electrodes is less frequently reported. This review mainly focuses on the current progress in the development of tungsten oxide-based electrodes for energy-storage applications, primarily supercapacitors (SCs) and batteries. Tungsten is found in various stoichiometric and nonstoichiometric oxides. Among the different tungsten oxide materials, tungsten trioxide (WO3 ) has been intensively investigated as an electrode material for different applications because of its excellent charge-transport features, unique physicochemical properties, and good resistance to corrosion. Various WO3 composites, such as WO3 /carbon, WO3 /polymers, WO3 /metal oxides, and tungsten-based binary metal oxides, have been used for application in SCs and batteries. However, pristine WO3 suffers from a relatively low specific surface area and low energy density. Therefore, it is crucial to thoroughly summarize recent progress in utilizing WO3 -based materials from various perspectives to enhance their performance. Herein, the potential- and pH-dependent behavior of tungsten in aqueous media is discussed. Recent progress in the advancement of nanostructured WO3 and tungsten oxide-based composites, along with related charge-storage mechanisms and their electrochemical performances in SCs and batteries, is systematically summarized. Finally, remarks are made on future research challenges and the prospect of using tungsten oxide-based materials to further upgrade energy-storage devices.
Collapse
Affiliation(s)
- Pragati A Shinde
- Nano-Electro Mechanical Device Laboratory, School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Seong Chan Jun
- Nano-Electro Mechanical Device Laboratory, School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| |
Collapse
|
24
|
Shinde PA, Khan MF, Rehman MA, Jung E, Pham QN, Won Y, Jun SC. Nitrogen-doped carbon integrated nickel–cobalt metal phosphide marigold flowers as a high capacity electrode for hybrid supercapacitors. CrystEngComm 2020. [DOI: 10.1039/d0ce01006e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fabrication of advanced MOF-derived multicomponent NiCoP/NC marigold flowers electrode for high-performance hybrid supercapacitors.
Collapse
Affiliation(s)
- Pragati A. Shinde
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | | | - Malik A. Rehman
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Euigeol Jung
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Quang N. Pham
- Department of Mechanical and Aerospace Engineering
- University of California Irvine
- Irvine
- USA
| | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering
- University of California Irvine
- Irvine
- USA
| | - Seong Chan Jun
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| |
Collapse
|
25
|
Cai X, Song Y, Wang SQ, Sun X, Liu XX. Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Zhao N, Fan H, Zhang M, Ma J, Zhang W, Wang C, Li H, Jiang X, Cao X. Investigating the large potential window of NiCo2O4 supercapacitors in neutral aqueous electrolyte. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134681] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
|