1
|
Pradhan T, Chelike DK, Roy D, Pramanik T, Dolui S. Stimuli-Responsive Multiacceptor Conjugated Polymers: Recent Trend and Future Direction. ACS POLYMERS AU 2025; 5:62-79. [PMID: 40226348 PMCID: PMC11986728 DOI: 10.1021/acspolymersau.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 04/15/2025]
Abstract
Apart from the visual effects, geometric shapes of materials play an important role in their engineering and biomedical applications. Responsive materials-based patient-specific anatomical models provide better insights into the structure and pathology. Polymers are by far the most utilized class of materials for advanced science and technology. Because of these properties, these polymers have been used as functional coatings, thermoplastics, biomedical materials, separators, and binders for Li-ion batteries, fuel cell membranes, piezoelectric devices, high-quality wires and cables, and so on. Reactive to stimuli because of their unusual electrical characteristics and adaptability, stimuli-responsive multiacceptor conjugated polymers have been a prominent focus of materials science study. These polymers combine several electron-accepting units inside their conjugated backbone, resulting in increased functionality and responsiveness to a variety of stimuli. The production, workings, and wide range of applications of stimuli-responsive multiacceptor conjugated polymers are the focus of this review.
Collapse
Affiliation(s)
- Tamanna Pradhan
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dinesh Kumar Chelike
- Department
of Chemistry, Rungta College of Engineering
& Technology Bhilai, Kohka, Durg, Chhattisgarh 490024, India
| | - Debarshi Roy
- Jay
FineChem Pvt. Ltd., Vapi, Gujarat 396191, India
| | - Tanay Pramanik
- Department
of Chemistry, Institute of Engineering and Management, University of Engineering and Management Kolkata, University Area, Action area 3,
Newtown, Kolkata 700160, India
| | - Subrata Dolui
- Graduate
School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashihiroshima 739-8527, Japan
| |
Collapse
|
2
|
Shih YH, Wu GL, Chueh PH, Chen JC, Tsai CY, Wang TY, Yu MH, Li YP, Chen WC, Chueh CC. The Influence of Interlocking Effects in Conjugated Polymers Synthesized by Aldol Polycondensation on Field-Effect Transistor Properties and Morphology. JACS AU 2025; 5:1382-1391. [PMID: 40151251 PMCID: PMC11938031 DOI: 10.1021/jacsau.5c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
The environmental and economic drawbacks of traditional palladium-catalyzed coupling reactions in the synthesis of conjugated polymers have prompted the exploration of green alternatives. This study presents the synthesis and characterization of a series of ladder-type conjugated polymers via aldol and Knoevenagel condensation reactions, which use simple acid or base catalysts and produce only water as a byproduct. We explore the interlocking effect of the backbone and study its role in enhancing the backbone planarity, charge transport, and morphology. Intramolecular hydrogen bonding in polymers P1 and P5 promotes strong interlocking interactions, resulting in high electron mobilities (2.09 × 10-2 cm2 V-1 s-1 and 8.26 × 10-2 cm2 V-1 s-1, respectively) and crystalline order. In contrast, their random copolymers (P2-P4) exhibited disrupted interlocking effects, leading to irregular backbone distortions and reduced charge transport. P6, designed with a rigid ladder-type backbone and bulky side chains, exhibits an exceptional hole mobility (3.27 × 10-1 s cm2 V-1 s-1) despite an amorphous morphology, which is attributed to efficient intrachain transport. These findings demonstrate the potential of the green condensation approach in developing conjugated polymers with high charge transport properties and different morphologies through intramolecular interlocking effects.
Collapse
Affiliation(s)
- Yen-Han Shih
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Guan-Lin Wu
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Pin-Hsiang Chueh
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Jing-Chun Chen
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Chu-Yen Tsai
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Ting-Yu Wang
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Ming-Hsuan Yu
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yi-Pei Li
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Janasik P, Chulkin P, Czichy M, Lapkowski M. Investigating perimidine precursors for the synthesis of new multiredox polymers. Sci Rep 2024; 14:21027. [PMID: 39251696 PMCID: PMC11384734 DOI: 10.1038/s41598-024-71842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
We present a new simple approach for electrochemical synthesis of semi-condensed ambipolar perinone polymers with phthaloperine (p1) or phenanthroline (p2) skeleton from available and cheap perimidine precursors. Polymerization of perimidine derivatives varies in efficiency depending on the monomer, but overall is highly efficient, especially when electropolymerization is used. Electrooxidation is well controllable and provides a certain characteristic share of new bonds in the structure of perimidine polymers: semi-ladder bis-perimidine unit, ladder bis-perimidine unit, and protonated bis-perimidine unit. Polymer p2 obtained with higher efficiency was put through broader analysis (UV-Vis, IR, ESR and quantum-chemical calculations). As indicated, donor-acceptor structure and specific intermolecular interactions of p2 assure its electrical conductivity and complex redox activity. Although protonated bonds break π-conjugation in the structure of the macromolecule, there is also a diradical state that favors intermolecular interactions and intermolecular π-conjugation channels within bis-perimidine segments. It has been proven that there is a diradical state which appears as an intermediate state between the oxidized and reduced states of the protonated polymer unit. This work positions perimidine polymers as a versatile ambipolar multiredox p- and n-type conductor, indicating a potential for expanding perinone-based perylene-diperimidine polymers for innovative electronics and (bio)sensors.
Collapse
Affiliation(s)
- Patryk Janasik
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Pavel Chulkin
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Malgorzata Czichy
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Mieczyslaw Lapkowski
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland.
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland.
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska Str., 41-819, Zabrze, Poland.
| |
Collapse
|
4
|
Quek G, Ohayon D, Ng PR, Bazan GC. A Cross-linked n-Type Conjugated Polymer with Polar Side Chains Enables Ultrafast Pseudocapacitive Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401395. [PMID: 38497830 DOI: 10.1002/smll.202401395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Pseudocapacitors bridge the performance gap between batteries and electric double-layer capacitors by storing energy via a combination of fast surface/near-surface Faradaic redox processes and electrical double-layer capacitance. Organic semiconductors are an emerging class of pseudocapacitive materials that benefit from facile synthetic tunability and mixed ionic-electronic conduction. Reported examples are mostly limited to p-type (electron-donating) conjugated polymers, while n-type (electron-accepting) examples remain comparatively underexplored. This work introduces a new cross-linked n-type conjugated polymer, spiro-NDI-N, strategically designed with polar tertiary amine side chains. This molecular design aims to synergistically increase the electroactive surface area and boost ion transport for efficient ionic-electronic coupling. Spiro-NDI-N demonstrates excellent pseudocapacitive energy storage performance in pH-neutral aqueous electrolytes, with specific capacitance values of up to 532 F g-1 at 5 A g-1 and stable cycling over 5000 cycles. Moreover, it maintains a rate capability of 307 F g-1 at 350 A g-1. The superior pseudocapacitive performance of spiro-NDI-N, compared to strategically designed structural analogues lacking either the cross-linked backbone or polar side chains, validates the essential role of its molecular design elements. More broadly, the design and performance of spiro-NDI-N provide a novel strategy for developing high-performance organic pseudocapacitors.
Collapse
Affiliation(s)
- Glenn Quek
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - David Ohayon
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Pei Rou Ng
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
- Department of Materials Science & Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Guillermo C Bazan
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
5
|
Garcia L, Koper MR, Mondal S, Priddle JT, Truong WA, Allbritton EMA, McAdoo AG, Cannon-Smith DJ, Funwie NL, Hoang T, Kim I, Hubin DJ, Krause JA, Oliver AG, Prior TJ, Hubin TJ. Earth Abundant Oxidation Catalysts for Removal of Contaminants of Emerging Concern from Wastewater: Homogeneous Catalytic Screening of Monomeric Complexes. Molecules 2023; 28:6466. [PMID: 37764242 PMCID: PMC10536317 DOI: 10.3390/molecules28186466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Twenty novel Mn, Fe, and Cu complexes of ethylene cross-bridged tetraazamacrocycles with potentially copolymerizable allyl and benzyl pendant arms were synthesized and characterized. Multiple X-ray crystal structures demonstrate the cis-folded pseudo-octahedral geometry forced by the rigidifying ethylene cross-bridge and show that two cis coordination cites are available for interaction with substrate and oxidant. The Cu complexes were used to determine kinetic stability under harsh acidic and high-temperature conditions, which revealed that the cyclam-based ligands provide superior stabilization with half-lives of many minutes or even hours in 5 M HCl at 50-90 °C. Cyclic voltammetry studies of the Fe and Mn complexes reveal reversible redox processes indicating stabilization of Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+ oxidation states, indicating the likelihood of catalytic oxidation for these complexes. Finally, dye-bleaching experiments with methylene blue, methyl orange, and rhodamine B demonstrate efficient catalytic decolorization and allow selection of the most successful monomeric catalysts for copolymerization to produce future heterogeneous water purification materials.
Collapse
Affiliation(s)
- Leslie Garcia
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Makynna R. Koper
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Somrita Mondal
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Joshua T. Priddle
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - William A. Truong
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | | | - Ashtyn G. McAdoo
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Desiray J. Cannon-Smith
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Neil L. Funwie
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Tuyet Hoang
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Inseo Kim
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - David J. Hubin
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Jeanette A. Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45220, USA
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Timothy J. Prior
- Department of Chemistry, School of Natural Sciences, University of Hull, Kingston Upon Hull HU6 7RX, UK
| | - Timothy J. Hubin
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| |
Collapse
|
6
|
Ledwon P, Lapkowski M. The Role of Electrochemical and Spectroelectrochemical Techniques in the Preparation and Characterization of Conjugated Polymers: From Polyaniline to Modern Organic Semiconductors. Polymers (Basel) 2022; 14:polym14194173. [PMID: 36236121 PMCID: PMC9570781 DOI: 10.3390/polym14194173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
This review article presents different electrochemical and spectroelectrochemical techniques used to investigate conjugated polymers. The development of this research area is presented from an over 40-year perspective-the period of research carried out by Professor Mieczyslaw Lapkowski. Initial research involved polymers derived from simple aromatic compounds, such as polyaniline. Since then, scientific advances in the field of conductive polymers have led to the development of so-called organic electronics. Electrochemical and spectroelectrochemical methods have a great influence in the development of organic semiconductors. Their potential for explaining many phenomena is discussed and the most relevant examples are provided.
Collapse
Affiliation(s)
- Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Mieczyslaw Lapkowski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
- Correspondence:
| |
Collapse
|
7
|
Rybakiewicz-Sekita R, Toman P, Ganczarczyk R, Drapala J, Ledwon P, Banasiewicz M, Skorka L, Matyjasiak A, Zagorska M, Pron A. D-A-D Compounds Combining Dithienopyrrole Donors and Acceptors of Increasing Electron-Withdrawing Capability: Synthesis, Spectroscopy, Electropolymerization, and Electrochromism. J Phys Chem B 2022; 126:4089-4105. [PMID: 35616402 PMCID: PMC9189846 DOI: 10.1021/acs.jpcb.2c01772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Five D-π-A-π-D compounds consisting of the same donor unit (dithieno[3,2-b:2',3'-d]pyrrole, DTP), the same π-linker (2,5-thienylene), and different acceptors of increasing electron-withdrawing ability (1,3,4-thiadiazole (TD), benzo[c][1,2,5]thiadiazole (BTD), 2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP), 1,2,4,5-tetrazine (TZ), and benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI)) were synthesized. DTP-TD, DTP-BTD, and DTP-DPP turned out to be interesting luminophores emitting either yellow (DTP-TD) or near-infrared (DTP-BTD and DTP-DPP) radiation in dichloromethane solutions. The emission bands were increasingly bathochromically shifted with increasing solvent polarity. Electrochemically determined electron affinities (|EA|s) were found to be strongly dependent on the nature of the acceptor changing from 2.86 to 3.84 eV for DTP-TD and DTP-NDI, respectively, while the ionization potential (IP) values varied only weakly. Experimental findings were strongly supported by theoretical calculations, which correctly predicted the observed solvent dependence of the emission spectra. Similarly, the calculated IP and EA values were in excellent agreement with the experiment. DTP-TD, DTP-BTD, DTP-TZ, and DTP-NDI could be electropolymerized to yield polymers of very narrow electrochemical band gap and characterized by redox states differing in color coordinates and lightness. Poly(DTP-NDI) and poly(DTP-TD) showed promising electrochromic behavior, not only providing a rich color palette in the visible but also exhibiting near-infrared (NIR) electrochromism.
Collapse
Affiliation(s)
- Renata Rybakiewicz-Sekita
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Institute
of Chemical Sciences, Cardinal Stefan Wyszynski
University in Warsaw, Woycickiego 1/3, 01-815 Warsaw, Poland
| | - Petr Toman
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Roman Ganczarczyk
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Jakub Drapala
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Przemyslaw Ledwon
- Faculty
of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Marzena Banasiewicz
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/44, 02-668 Warsaw, Poland
| | - Lukasz Skorka
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Anna Matyjasiak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Malgorzata Zagorska
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Adam Pron
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
8
|
Nitschke P, Jarząbek B, Bejan AE, Damaceanu MD. Effect of Protonation on Optical and Electrochemical Properties of Thiophene-Phenylene-Based Schiff Bases with Alkoxy Side Groups. J Phys Chem B 2021; 125:8588-8600. [PMID: 34313112 PMCID: PMC8389983 DOI: 10.1021/acs.jpcb.1c05390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Three polyazomethines
and their corresponding model compounds were
protonated with trifluoroacetic acid, and its effect on their optical
(UV–vis absorption and photoluminescence) properties and electrochemical
behavior has been studied, in the context of the presence and elongation
of alkoxy side groups. Moreover, the effect of environment dielectric
constants (i.e., polarity of the solvent) was considered on the doping
process. It has been proven that the presence of alkoxy side groups
is necessary for protonation to occur, while unsubstituted compounds
undergo hydrolysis to constitutive units. Acid doping of imines consisting
of alkoxy side chains has resulted in a distinct bathochromic shift
(>200 nm) of the low-energy absorption band. Even the length of
alkyl
chains has not affected the position of shifted bands; it has been
observed that azomethines with smaller, methoxy side groups undergo
the protonation process much faster than their octyloxy-substituted
analogues, due to the absence of steric hindrance. The electrochemical
studies of these alkoxy-substituted imines have indicated a better
p-type behavior after protonation induced by the capability of the
protonated form to easily oxidize in acetonitrile and to generate
the native molecules. The environmental polarity has also had impact
on the doping process, which took place only in low-polar media.
Collapse
Affiliation(s)
- Paweł Nitschke
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska Str., Zabrze 41-819, Poland
| | - Bożena Jarząbek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska Str., Zabrze 41-819, Poland
| | - Andra-Elena Bejan
- Electroactive Polymers and Plasmochemistry Laboratory, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Vodă nr. 41A, Iaşi 700487, Romania
| | - Mariana-Dana Damaceanu
- Electroactive Polymers and Plasmochemistry Laboratory, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Vodă nr. 41A, Iaşi 700487, Romania
| |
Collapse
|
9
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
10
|
The electrochemical response of core-functionalized naphthalene Diimides (NDI) – a combined computational and experimental investigation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Drewniak A, Tomczyk MD, Knop K, Walczak KZ, Ledwon P. Multiple Redox States and Multielectrochromism of Donor–Acceptor Conjugated Polymers with Aromatic Diimide Pendant Groups. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anna Drewniak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mateusz D. Tomczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Karol Knop
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Krzysztof Z. Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, ul. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|