1
|
Yadav S, Baghel NS, Sarkar SK, Subramaniam C. Interplay of Size and Magnetic Effects in Electrocatalytic Water Oxidation Activity of Sub-10 nm NiO x Supported Porous Hard-Carbons. Chem Asian J 2024; 19:e202400631. [PMID: 39034282 DOI: 10.1002/asia.202400631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
This report describes a systematic approach for precise engineering of a catalyst-metal oxide interface through combining complementary approaches of chemical vapor deposition and atomic layer deposition. Specifically, Chemical Vapor Deposition (CVD) fabricated nanostructured hard-carbon framework (NCF) is employed as synergistic support for precise deposition of NiOx particles through Atomic Layer Deposition (ALD). The three variants of NCF-NiOx system (dimensions ranging from 3-12 nm, surface coverage ranging from 0.14 %-2 %) achieved exhibit unique electrocatalytic water oxidation activities, that are further strongly influenced by an external magnetic field (Hext). This confluence of size engineering and associated magnetic field effects interplay to produce the largest lowering in Rct at Hext=200 mT. A comprehensive analysis of electrocatalytic parameters including the Tafel slope and double layer capacitance establishes further insights on co-relation of size effect and magnetic properties to understand the role of nanocarbon supported transition metal oxides in water electrolysis.
Collapse
Affiliation(s)
- Subham Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| | - Niranjan S Baghel
- Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| | - Shaibal K Sarkar
- Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| | - Chandramouli Subramaniam
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| |
Collapse
|
2
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Kothandam G, Singh G, Guan X, Lee JM, Ramadass K, Joseph S, Benzigar M, Karakoti A, Yi J, Kumar P, Vinu A. Recent Advances in Carbon-Based Electrodes for Energy Storage and Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301045. [PMID: 37096838 PMCID: PMC10288283 DOI: 10.1002/advs.202301045] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Carbon-based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are attracting significant attention as promising materials for next-generation energy storage and conversion applications. They possess unique physicochemical properties, such as structural stability and flexibility, high porosity, and tunable physicochemical features, which render them well suited in these hot research fields. Technological advances at atomic and electronic levels are crucial for developing more efficient and durable devices. This comprehensive review provides a state-of-the-art overview of these advanced carbon-based nanomaterials for various energy storage and conversion applications, focusing on supercapacitors, lithium as well as sodium-ion batteries, and hydrogen evolution reactions. Particular emphasis is placed on the strategies employed to enhance performance through nonmetallic elemental doping of N, B, S, and P in either individual doping or codoping, as well as structural modifications such as the creation of defect sites, edge functionalization, and inter-layer distance manipulation, aiming to provide the general guidelines for designing these devices by the above approaches to achieve optimal performance. Furthermore, this review delves into the challenges and future prospects for the advancement of carbon-based electrodes in energy storage and conversion.
Collapse
Affiliation(s)
- Gopalakrishnan Kothandam
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Jang Mee Lee
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Stalin Joseph
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Mercy Benzigar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| |
Collapse
|
4
|
Yang H, Shuai W, Zhu X, Lai L, Liu J, Li C, Yang J, Wang G, Chen Y. Molten salt-induced vertical CoP/Co nanosheets array coupled with carbon for efficient water splitting. J Colloid Interface Sci 2022; 623:808-818. [DOI: 10.1016/j.jcis.2022.05.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
|
5
|
Wu S, Wang X, Bai J, Zhu Y, Yu X, Qin F, He P, Ren L. Influence of Nitrogen-Doped Carbon Quantum Dots on the Electrocatalytic Performance of the CoP Nanoflower Catalyst for OER. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11210-11218. [PMID: 36084196 DOI: 10.1021/acs.langmuir.2c01225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cobalt phosphides modified by nitrogen-doped carbon quantum dots (CoP-NCQDs) were successfully constructed by a facile and low-cost hydrothermal treatment, which is expected to replace traditional noble-metal oxygen evolution reaction electrode materials. Detailed experiments and findings show that nitrogen-doped carbon quantum dots (NCQDs) have a significant impact on the morphology of the CoP catalyst, and nitrogen doping can regulate the surface-active sites to obtain the catalyst with abundant structural defects. Simultaneously, nitrogen doping can regulate the content of pyridinic N and pyrrolic N, which exerts positive effects on the formation of the bond structure and electron conduction between NCQDs and CoP.
Collapse
Affiliation(s)
- Shuang Wu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinyu Wang
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jianliang Bai
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yaqing Zhu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xu Yu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fu Qin
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Pinyi He
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lili Ren
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Zhao S, Zhao Y, Chen J, Dai R, Zhou W, Yang J, Zhao X, Chen Z, Zhou Y, Zhang H, Chen A. Crystalline and amorphous phases: NiFeCo tri-metal phosphide as an efficient electrocatalyst to accelerate oxygen evolution reaction kinetics. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Tang F, Zhao YW, Ge Y, Sun YG, Zhang Y, Yang XL, Cao AM, Qiu JH, Lin XJ. Synergistic effect of Mn doping and hollow structure boosting Mn-CoP/Co 2P nanotubes as efficient bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2022; 628:524-533. [PMID: 36007417 DOI: 10.1016/j.jcis.2022.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/26/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
The sluggish kinetic of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) severely hampers the commercial application of electrochemical water splitting, promoting the urgent exploration of high-efficient bifunctional electrocatalysts. Heteroatom doping and structure engineering have been identified as the most effective strategies to boost the catalytic activity of electrocatalysts. Herein, Mn doping and hollow structure were integrated in the design of Co-based transition metal phosphide catalyst to prepare Mn-CoP/Co2P nanotubes (denoted as Mn-CP NTs) by a facile template-free method. Confirmed by characterization analysis, the introduced Mn species were in high dispersion in the regular CoP/Co2P hollow tubular framework. Such a favorable design in composition and structure effectively boosted the catalytic activity of Mn-CP NTs toward electrochemical water splitting. The Mn-CP NTs showed superior HER and OER activity demonstrated by the low overpotentials of 82 mV (vs HER) and 309 mV (vs OER) at the current density of 10 mA cm-2, as well as the satisfactory durability. When used as both cathode and anode in electrolyzer for overall water splitting, only a low cell voltage of 1.67 V was required for the Mn-CP NTs to drive 10 mA cm-2, accompanied with excellent stability confirmed by over 50 h test.
Collapse
Affiliation(s)
- Fan Tang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Yu-Wei Zhao
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Yu Ge
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Yong-Gang Sun
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Yu Zhang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Xiu-Lin Yang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - An-Min Cao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jian-Hua Qiu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| | - Xi-Jie Lin
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
8
|
An efficient and robust chain-mail electrocatalyst Ni2P @ g-C3N4 for oxygen evolution in alkaline solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Li S, Chen W, Zhu Y, Guan J, Wang L, Guo B, Zhang M. Modifying properties and endurance of CoP by cerium doping to enhances overall water splitting in alkaline medium. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Qasim M, Liu M, Guo L. Z-scheme P-doped-g-C3N4/Fe2P/red-P ternary composite enables efficient two-electron photocatalytic pure water splitting. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Cao X, Tan Y, Zheng H, Hu J, Chen X, Chen Z. Effect of cobalt phosphide (CoP) vacancies on its hydrogen evolution activity via water splitting: a theoretical study. Phys Chem Chem Phys 2022; 24:4644-4652. [PMID: 35133361 DOI: 10.1039/d1cp05739a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Defect engineering plays an important role in improving the performance of catalysts. To clarify the roles of Co and P vacancies in CoP for water splitting, a theoretical study based on density functional theory was carried out in this paper. The geometric and electronic structures, activity and stability of the CoP (101)B surface, CoP (101)B with the Co vacancy (Covac) and the P vacancy (Pvac) are investigated. The results indicate that the CoP (101)B surface with Pvac and Covac can enhance the electron transfer to the surface. The Pvac will upward shift the Co d-band center near the vacancy site, which promotes the adsorption of H on the Co atom. As a result, the bridge Co-Co sites near the vacancy become the active sites for the hydrogen evolution reaction (HER) (ΔGH* = 0.01 eV). The loss of the Co atom also results in an upward shift of its d-band center, which will enhance the H adsorption on the adjacent Co sites. The unevenly distributed electrons due to the presence of vacancies on the surface cause spontaneous dissociation of H2O molecules. Furthermore, the thermodynamic analysis and surface energy find that the CoP (101)B and (101)B facets with Covac and Pvac present good stability. The current work has shed light onto the mechanism of water splitting on the surface of phosphide with vacancies. Our study suggests that engineering vacancies on CoP is a feasible route to improve its catalytic activity.
Collapse
Affiliation(s)
- Xiaofei Cao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China.
| | - Yuan Tan
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China.
| | - Huaan Zheng
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China.
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China.
| | - Xi Chen
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA.
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
12
|
Molten Salts Strategy for the Synthesis of CoP Nanoparticles Entrapped, N,P Co-doped Mesoporous Carbons as Electrocatalysts for Hydrogen Evolution. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Vanadium doped nickel cobalt phosphide as an efficient and stable electrode catalyst for hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Sun L, Luo Q, Dai Z, Ma F. Material libraries for electrocatalytic overall water splitting. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Lin S, Yu Y, Sun D, Meng F, Chu W, Huang L, Ren J, Su Q, Ma S, Xu B. FeNi 2P three-dimensional oriented nanosheet array bifunctional catalysts with better full water splitting performance than the full noble metal catalysts. J Colloid Interface Sci 2021; 608:2192-2202. [PMID: 34785047 DOI: 10.1016/j.jcis.2021.09.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 11/24/2022]
Abstract
The 3D (three-dimensional) oriented nanosheet array FeNi2P electrocatalyst grown on carbon cloth (FeNi2P/CC) is explored in this work. This unique 3D oriented nanosheet array structure can expose more catalytic active sites, promote the penetration of electrolyte solution on the catalyst surface, and facilitate the transfer of ions, thus speeding up the kinetic process of Hydrogen evolution reaction (HER) and Oxygen evolution reaction (OER). At the current densities of 10 mA/cm2 in 1 M KOH solution, the HER overpotential (71 mV) of the FeNi2P/CC self-supporting electrode is very close to that of noble metal HER catalyst of 20% Pt/C (54 mV), and its OER overpotential (210 mV) is 34% lower than that of the precious metal OER catalyst of RuO2 (318 mV), demonstrating the excellent electrocatalytic performance of the FeNi2P/CC catalyst. Moreover, the cell voltage for full water splitting (at 10 mA/cm2 current densities) of the FeNi2P/CC bifunctional electrode cell is 1.52 V, which is 3.8% lower than that of the full noble-metal electrode reference cell (RuO2 || Pt/C, 1.58 V), suggesting that this FeNi2P/CC bifunctional catalyst is likely to replace precious metals to reduce the costs in full water splitting application. According to density functional theory (DFT) calculation results, the introduction of iron atom can change the electronic structure of the Ni2P, so it can reduce the adsorption energy of hydrogen and oxygen, and facilitate the adsorption and desorption of hydrogen and oxygen on the surface of the catalyst, improving its performance of HER and OER.
Collapse
Affiliation(s)
- Songmin Lin
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuan Yu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Dongfeng Sun
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Fangyou Meng
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenhui Chu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Linyin Huang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jie Ren
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingmei Su
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
16
|
Chen L, Sagar RUR, Aslam S, Deng Y, Hussain S, Ali W, Liu C, Liang T, Hou X. Neodymium-decorated graphene as an efficient electrocatalyst for hydrogen production. NANOSCALE 2021; 13:15471-15480. [PMID: 34515273 DOI: 10.1039/d1nr03992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rare earth (RE) materials such as neodymium (Nd) and others consist of unique electronic configurations which result in unique electronic, electrochemical, and photonic properties. The high temperature (>1100 °C) growth and low active surface areas of REs hinder their use as an efficient electrocatalyst. Herein, different morphologies of Nd were successfully fabricated in situ on the surface of graphene using a double-zone chemical vapor deposition (CVD) method. The morphology of the Nd material on graphene is controlled, which results in the significant enhancement of the large specific surface area and electrochemical active area of the composite material due to the spatial morphology of Nd, thereby improving the hydrogen evolution reaction (HER) performance in an alkaline medium. The significantly enhanced HER activity with an overpotential of 75 mV and a Tafel slope of 95 mV dec-1 at a current density of 10 mA cm-2 is observed in Nd-GF. Mainly, a high specific surface area of ∼2217 cm2 g-1 and the porosity of graphene play major roles in the enhancement of activity. Thus, the present work provides a new strategy for the neodymium engineering synthesis of efficient rare earth-graphene composite electrocatalysts with a high electrochemical active area.
Collapse
Affiliation(s)
- Lifang Chen
- College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, PR China.
| | - Rizwan Ur Rehman Sagar
- College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, PR China.
| | - Sehrish Aslam
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yiqun Deng
- College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, PR China.
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, China
| | - Waris Ali
- Department of Physics, Govt Islamia College Civil Lines (GICCL), St. Nagar Road Lahore, 54000, Pakistan
| | - Chao Liu
- College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, PR China.
| | - Tongxiang Liang
- College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, PR China.
| | - Xinmei Hou
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, P.R. China.
| |
Collapse
|
17
|
Zhang P, Lu YR, Suen NT. Crystal and Electronic Structure Modification of Synthetic Perryite Minerals: A Facile Phase Transformation Strategy to Boost the Oxygen Evolution Reaction. Inorg Chem 2021; 60:13607-13614. [PMID: 34435489 DOI: 10.1021/acs.inorgchem.1c01909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geometry effect and electronic effect are both essential for the rational design of a highly efficient electrocatalyst. In order to untangle the relationship between these effects and electrocatalytic activity, the perryite phase with a versatile chemical composition, (NixFe1-x)8(TyP1-y)3 (T = Si and Ge; 1 ≥ x, y ≥ 0), was selected as a platform to demonstrate the influence of geometry (e.g., atomic size and bond length) and electronic (e.g., bond strength and bonding scheme) factors toward the oxygen evolution reaction (OER). It was realized that the large Ge atom in the perryite phase can expand the unit cell parameters and interatomic distances (i.e., weaken bond strengths), which facilitates the phase transformation into active metal oxyhydroxide during OER. The quaternary perryite phase, Ni7FeGeP2, displays excellent OER activity and achieves current densities of 20 and 100 mA/cm2 at overpotentials of 239 and 273 mV, respectively. The oxidation state of Ni and Fe in the perryite phase before/after OER was analyzed and discussed. The result suggests that incorporating the Fe element in the system may increase the rate constant of OER (KOER) and therefore keeps the Ni element in a low valance state (i.e., Ni2+). This work indicates that the manipulation of geometry and electronic factors can promote phase transformation as well as OER activity, which exemplifies a strategy to design a promising "precatalyst" for OER.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
18
|
Lu P, Chen X. Nanoscale hetero-structured Co−Co(OH)2 composite/amorphous carbon core/shell bi-functional electrocatalysts electrochemically evolved from metastable hexagonal-phase cobalt for overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Synthesis of hyperbranched Co-Ni-P nanocrystals and their splitting degree dependent HER performances. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Liu Y, Li Y, Wu Q, Su Z, Wang B, Chen Y, Wang S. Hollow CoP/FeP 4 Heterostructural Nanorods Interwoven by CNT as a Highly Efficient Electrocatalyst for Oxygen Evolution Reactions. NANOMATERIALS 2021; 11:nano11061450. [PMID: 34070770 PMCID: PMC8227064 DOI: 10.3390/nano11061450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Electrolysis of water to produce hydrogen is crucial for developing sustainable clean energy and protecting the environment. However, because of the multi-electron transfer in the oxygen evolution reaction (OER) process, the kinetics of the reaction is seriously hindered. To address this issue, we designed and synthesized hollow CoP/FeP4 heterostructural nanorods interwoven by carbon nanotubes (CoP/FeP4@CNT) via a hydrothermal reaction and a phosphorization process. The CoP/FeP4@CNT hybrid catalyst delivers prominent OER electrochemical performances: it displays a substantially smaller Tafel slope of 48.0 mV dec−1 and a lower overpotential of 301 mV at 10 mA cm−2, compared with an RuO2 commercial catalyst; it also shows good stability over 20 h. The outstanding OER property is mainly attributed to the synergistic coupling between its unique CNT-interwoven hollow nanorod structure and the CoP/FeP4 heterojunction, which can not only guarantee high conductivity and rich active sites, but also greatly facilitate the electron transfer, ion diffusion, and O2 gas release and significantly enhance its electrocatalytic activity. This work offers a facile method to develop transition metal-based phosphide heterostructure electrocatalysts with a unique hierarchical nanostructure for high performance water oxidation.
Collapse
Affiliation(s)
- Yanfang Liu
- College of Science, Institute of Oxygen Supply, Tibet University, Lhasa 850000, China; (Y.L.); (Y.L.); (Q.W.)
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Yong Li
- College of Science, Institute of Oxygen Supply, Tibet University, Lhasa 850000, China; (Y.L.); (Y.L.); (Q.W.)
| | - Qi Wu
- College of Science, Institute of Oxygen Supply, Tibet University, Lhasa 850000, China; (Y.L.); (Y.L.); (Q.W.)
| | - Zhe Su
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Bin Wang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
- Correspondence: (B.W.); (Y.C.); (S.W.)
| | - Yuanfu Chen
- College of Science, Institute of Oxygen Supply, Tibet University, Lhasa 850000, China; (Y.L.); (Y.L.); (Q.W.)
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
- Correspondence: (B.W.); (Y.C.); (S.W.)
| | - Shifeng Wang
- College of Science, Institute of Oxygen Supply, Tibet University, Lhasa 850000, China; (Y.L.); (Y.L.); (Q.W.)
- Key Laboratory of Cosmic Rays, Tibet University, Ministry of Education, Lhasa 850000, China
- Correspondence: (B.W.); (Y.C.); (S.W.)
| |
Collapse
|
21
|
Cao L, Tan Y, Deng W, Xie Q. MWCNTs-CoP hybrids for dual-signal electrochemical immunosensing of carcinoembryonic antigen based on overall water splitting. Talanta 2021; 233:122521. [PMID: 34215136 DOI: 10.1016/j.talanta.2021.122521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Great efforts have been made to search for highly active catalysts toward electrochemical water splitting, but double-signal immunosensors have not been reported based on bifunctional water splitting electrocatalysts. We report here a dual-signal electrochemical immunosensor for detecting carcinoembryonic antigen (CEA) using multi-wall carbon nanotubes (MWCNTs)-cobalt phosphide (CoP) as an electrocatalytic label. The preparation of MWCNTs-CoP involves the growth of Co3O4 nanoparticles on MWCNTs and low-temperature phosphatization of Co3O4 nanoparticles. The MWCNTs-CoP catalyst shows excellent electrocatalytic activities in a neutral medium toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), enabling MWCNTs-CoP as the electrocatalytic label for sensitive immunosensing. The linear range of the sandwich-type immunosensor for detecting CEA based on the HER signal is from 10-4-100 ng mL-1, whereas a linear range for detecting CEA based on the OER signal is achieved from 10-4 to 10 ng mL-1. The detection limits for detecting CEA using HER and OER signals are 10 and 12 fg mL-1, respectively. This work can provide a new double-signal immunosensing platform based on a bifunctional water splitting electrocatalyst.
Collapse
Affiliation(s)
- Lin Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
22
|
Electrodeposition, formation mechanism, and electrocatalytic performance of Co-Ni-P ternary catalysts coated on carbon fiber paper. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04929-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Zeng K, Wei M, Li C, Sun J, Jin C, Yang R. PPy-derived N, P co-doped hollow carbon fiber decorated with island-like Ni2P nanoparticles as bifunctional oxygen electrocatalysts. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Hybrid of NiO-Ni12P5/N-doped carbon nanotubes as non-noble electrocatalyst for efficient hydrogen evolution reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Yan Z, Wang X, Tan Y, Liu A, Luo F, Zhang M, Zeng L, Zhang Y. The in situ growth of Cu 2O with a honeycomb structure on a roughed graphite paper for the efficient electroreduction of CO 2 to C 2H 4. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01099a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A Cu2O/NGP self-supporting electrocatalyst is used for the electrocatalytic reduction of CO2 to ethylene to solve environmental and energy problems.
Collapse
Affiliation(s)
- Zuoyu Yan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xiuxiu Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Fenqiang Luo
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Miaorong Zhang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lingxing Zeng
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yan Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
26
|
Zhao X, Zhou D, Chen M, Yang J, Fan LZ. Achieving the robust immobilization of CoP nanoparticles in cellulose nanofiber network-derived carbon via chemical bonding for a stable potassium ion storage. RSC Adv 2020; 10:44611-44623. [PMID: 35517175 PMCID: PMC9058511 DOI: 10.1039/d0ra09478a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 11/21/2022] Open
Abstract
Potassium-ion batteries (KIBs) are currently being investigated as a potential alternative to lithium-ion batteries (LIBs) because of the natural abundance of K resources. Presently, it is crucial yet challenging to explore suitable anode materials for stable K-storage. Herein, a novel robust CoP-carbon composite with highly dispersed CoP nanoparticles (NPs) immobilized in natural cellulose nanofiber network (CNF)-derived carbon (denoted as CoP@CNFC) is synthesized via chemical bonding through a facile hydrothermal and subsequent in situ phosphidation approach. The designed structure can provide diverse merits, including fast reaction kinetics, sufficient active sites and effective accommodation for K+ insertion/extraction; thus, CoP@CNFC delivers desired electrochemical performance, including considerable reversible capacity, enhanced rate capability and excellent cycling stability. Additionally, the electrochemical reaction mechanism of CoP@CNFC was clearly revealed by ex situ characterizations and theoretical simulations of cyclic voltammetry (CV) and solid electrolyte interface (SEI) profiles based on first-principles calculations. The achieved deep elucidation of the reversible process of K+ insertion and extraction on the surface/interface of the active material during the discharge and charge states clearly highlights its significance for stable K-storage. This work promotes the facile design and deep understanding of nanostructured high-capacity electrodes of transition metal phosphates for rechargeable KIBs.
Collapse
Affiliation(s)
- Xudong Zhao
- Center for Green Innovation, School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Dan Zhou
- Center for Green Innovation, School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Mingyang Chen
- Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 China .,Shunde Graduate School of University of Science and Technology Beijing Foshan 528000 China.,Beijing Computational Science Research Center Beijing 100084 China
| | - Jiaqi Yang
- Office of Educational Administration, Shenyang Open University Shenyang 110003 China
| | - Li-Zhen Fan
- Center for Green Innovation, School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
27
|
Sideri IK, Tagmatarchis N. Noble-Metal-Free Doped Carbon Nanomaterial Electrocatalysts. Chemistry 2020; 26:15397-15415. [PMID: 32931046 DOI: 10.1002/chem.202003613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 11/08/2022]
Abstract
Electrocatalytic processes, such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO2 RR), play key roles in various sustainable energy storage and production devices and their optimization in an ecological manner is of paramount importance for mankind. In this inclusive Review, we aspire to set the scene on doped carbon-based nanomaterials and their hybrids as precious-metal alternative electrocatalysts for these critical reactions in order for the research community not only to stay up-to-date, but also to get inspired and keep pushing forward towards their practical application in energy conversion.
Collapse
Affiliation(s)
- Ioanna K Sideri
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| |
Collapse
|
28
|
Metal-organic frameworks assisted the construction of NixCo1-xP/rGO composites as highly efficient hydrogen evolution catalysts. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Wang H, Gao Q, Sun S, Zhang W, Yao S. CoP@NRGO composite as a high-efficiency water electrolysis catalyst for hydrogen generation. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Characterization and Electrochemical Behaviour of Nanoscale Hydrotalcite-Like Compounds toward the Reduction of Nitrate. NANOMATERIALS 2020; 10:nano10101926. [PMID: 32992443 PMCID: PMC7599484 DOI: 10.3390/nano10101926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
In this research, nano Cu/Al–HTLCs, Co/Al–HTLCs and Cu/Co/Al–HTLCs were synthesized, characterized, and tested in electrolytic reduction nitrate. Experimental results showed that Cu/Al–HTLCs were less stable than Co/Al–HTLCs due to the Jahn–Teller effect. However, electrocatalytic activity of copper was superior to that of cobalt; thus, Cu/Co/Al–HTLCs were selected based on their stable crystalline structure and electrochemical activity. The optimized Cu2CoAl–HTLC was highly active in nitrate reduction, with two peaks for nitrate and nitrite reduction, respectively. Ammonia, nitrite and N-containing gases were found to be the final products of constant potential electrolysis at −0.54 and −0.74 V.
Collapse
|
31
|
Lu Y, Chen Y, Srinivas K, Su Z, Wang X, Wang B, Yang D. Employing dual-ligand co-coordination compound to construct nanorod-like Bi-metallic (Fe, Co)P decorated with nitrogen-doped graphene for electrocatalytic overall water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Xu J, Liu Z, Wei Z, Zhang S, Guo C, He M. 3D porous flower-like heterostructure of Fe doped Ni2P nanoparticles anchored on Al2O3 nanosheets as an ultrastable high-efficiency electrocatalyst. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Ali A, Shen PK. Recent Progress in Graphene-Based Nanostructured Electrocatalysts for Overall Water Splitting. ELECTROCHEM ENERGY R 2020. [DOI: 10.1007/s41918-020-00066-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
|
35
|
Li L, Wang X, Guo Y, Li J. Synthesis of an Ultrafine CoP Nanocrystal/Graphene Sandwiched Structure for Efficient Overall Water Splitting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1916-1922. [PMID: 32036665 DOI: 10.1021/acs.langmuir.9b03810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A CoP/graphene composite was synthesized through a coprecipitation and in situ phosphorization protocol using α-Co(OH)2 and graphene oxide as precursors. The similar two-dimensional layered structures ensured evenly attached α-Co(OH)2 nanosheets on the graphene oxide support and the formation of a sandwich-like structure. The sequential in situ phosphorization strategy not only generated a high density of ultrafine CoP nanocrystals but also simultaneously reduced the graphene oxide support. The enough exposed active sites combined with a highly conductive matrix resulted in an excellent electrochemical catalyst for overall water splitting. The overpotential is only 125 mV at 10 mA·cm2 in 0.5 M H2SO4. Good electrocatalytic performance was also exhibited in alkaline conditions for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotential is 119 mV for HER and 374 mV for OER at 10 mA·cm2 in 1 M KOH. More importantly, the composite exhibited much higher exchange current densities during HER processes (1.64 × 10-4 A·cm-2 in 0.5 M H2SO4 and 2.93 × 10-4 A·cm-2 in 1 M KOH) when compared with similar materials reported before. This low-cost, simple, and efficient approach is suitable for mass production and practical applications.
Collapse
Affiliation(s)
- Liang Li
- Laboratory for Low Dimensions Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinran Wang
- Laboratory for Low Dimensions Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Guo
- Laboratory for Low Dimensions Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinxin Li
- Laboratory for Low Dimensions Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
36
|
Zhang X, Chen Y, Chen M, Wang B, Yu B, Wang X, Zhang W, Yang D. FeNi 3-modified Fe 2O 3/NiO/MoO 2 heterogeneous nanoparticles immobilized on N, P co-doped CNT as an efficient and stable electrocatalyst for water oxidation. NANOSCALE 2020; 12:3777-3786. [PMID: 31994573 DOI: 10.1039/c9nr09460a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a rate-determining step, electrocatalytic water oxidation acts a pivotal role in the water splitting process. As a consequence, it is of great significance to explore low-cost, efficient and durable electrocatalysts for the oxygen evolution reaction (OER) to promote electrocatalytic splitting water. Herein, for the first time, FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT matrix materials (FNM/NPCNT) are synthesized via a facile solid-phase grinding of the precursor, composed of nickel hexacyanoferrate/phosphomolybdic acid/CNT, and subsequently pyrolyzing under nitrogen atmosphere without any further post-processing. Due to its significant enhancement of the charge transfer efficiency and prevention of the metallic-based catalysts from being corroded, the as-prepared FNM/NPCNT hybrid electrocatalyst shows a high OER activity with a low overpotential of 282 mV vs. RHE at 10 mA cm-2 and a small Tafel slope of 46.2 mV dec-1 in an alkaline electrolyte. Moreover, the as-prepared FNM/NPCNT hybrid delivers a large mass activity of 327.6 A g-1 at the potential of 1.7 V and excellent stability (more than 20 h). This study opens up a new approach to design and synthesize non-precious transition metal-based composites immobilized N, P co-doped CNT materials as OER catalysts with high efficiency and long-term stability for promoting water splitting.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Yuanfu Chen
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China. and Department of Physics, School of Science, Tibet University, Lhasa, 850000, PR China
| | - Minglong Chen
- Chengdu Kanghong Pharmaceutical Group Co., Ltd, Chengdu 610054, PR China
| | - Bin Wang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Bo Yu
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Xinqiang Wang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Wanli Zhang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Dongxu Yang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
37
|
Liu Y, Guan X, Huang B, Wei Q, Xie Z. One-Step Synthesis of N, P-Codoped Carbon Nanosheets Encapsulated CoP Particles for Highly Efficient Oxygen Evolution Reaction. Front Chem 2020; 7:805. [PMID: 31998679 PMCID: PMC6962193 DOI: 10.3389/fchem.2019.00805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/08/2019] [Indexed: 11/13/2022] Open
Abstract
Oxygen electrocatalysis, especially oxygen evolution reaction (OER), is a central process during the actual application of rechargeable metal-air battery. It is still challenging to develop ideal electrocatalysts to substitute the commercial noble metal-based materials. In this work, we have constructed a new material, CoP nanoparticles, which are encapsulated by a biomolecule-derived N, P-codoped carbon nanosheets via a simple and facile one-step strategy. The as-prepared material releases a high electrocatalytic activity and stability for OER, with an overpotential of 310 mV to achieve 10 mA/cm2 in 1 M KOH. Importantly, we found that the phosphoric acid can not only introduce phosphorus dopant into 2D N-doped carbon nanosheets and play a role of pore-forming agent, but also participate in the formation of active center (cobalt phosphide). Moreover, the coverage of N, P-doped carbon can prevent the CoP nanoparticles from corrosion under the harsh reaction medium to achieve high and stable activity. We believe that our strategy can offer a novel pathway to synthesize new transition metal-based catalysts for electrocatalysis or other heterogeneous catalysis.
Collapse
Affiliation(s)
| | | | | | - Qiaohua Wei
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zailai Xie
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
38
|
Xu Y, Li X, Wang J, Yu Q, Qian X, Chen L, Dan Y. Fe‐Doped CoP Flower‐Like Microstructure on Carbon Membrane as Integrated Electrode with Enhanced Sodium Ion Storage. Chemistry 2020; 26:1298-1305. [DOI: 10.1002/chem.201904637] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Yalin Xu
- School of Environment & Chemical EngineeringJiangsu University Science & Technology Institution Zhenjiang 212003 P. R. China
| | - Xueying Li
- School of Environment & Chemical EngineeringJiangsu University Science & Technology Institution Zhenjiang 212003 P. R. China
| | - Jiangang Wang
- School of Environment & Chemical EngineeringJiangsu University Science & Technology Institution Zhenjiang 212003 P. R. China
| | - Qing Yu
- School of Environment & Chemical EngineeringJiangsu University Science & Technology Institution Zhenjiang 212003 P. R. China
| | - Xiu Qian
- School of Environment & Chemical EngineeringJiangsu University Science & Technology Institution Zhenjiang 212003 P. R. China
| | - Lizhuang Chen
- School of Environment & Chemical EngineeringJiangsu University Science & Technology Institution Zhenjiang 212003 P. R. China
| | - Yuanyuan Dan
- School of Environment & Chemical EngineeringJiangsu University Science & Technology Institution Zhenjiang 212003 P. R. China
| |
Collapse
|
39
|
Li K, Jian X, Li S, Wang W, Lei Y, Zhang P, Liu J, Zhou C, Chen L. In situ growth of urchin-like cobalt–chromium phosphide on 3D graphene foam for efficient overall water splitting. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00908c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CoCr-P@3DGF composite shows excellent activity and durability for overall water splitting due to Cr-doping and the 3DGF substrate.
Collapse
Affiliation(s)
- Kuang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xue Jian
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Shuo Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weiwei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yuchen Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Peilin Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jinzhe Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chencheng Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Luyang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
40
|
Zhang X, Guo T, Liu T, Lv K, Wu Z, Wang D. Tungsten phosphide (WP) nanoparticles with tunable crystallinity, W vacancies, and electronic structures for hydrogen production. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Enhanced electrocatalytic HER performance of non-noble metal nickel by introduction of divanadium trioxide. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
FeNi nanoparticles embedded porous nitrogen-doped nanocarbon as efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134720] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Li W, Chen Y, Yu B, Hu Y, Wang X, Yang D. 3D hollow Co-Fe-P nanoframes immobilized on N,P-doped CNT as an efficient electrocatalyst for overall water splitting. NANOSCALE 2019; 11:17031-17040. [PMID: 31503267 DOI: 10.1039/c9nr05924e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rational design of nonprecious and high-efficiency bifunctional electrocatalysts with advanced structural and compositional preponderance for water electrolysis is of paramount importance for the generation of sustainable and clean energy. Herein, for the first time, a novel three-dimensional (3D) hollow hybrid electrocatalyst, Co-Fe-P nanoframe immobilized on N,P-doped carbon nanotubes (CoFeP NFs/NPCNT), was synthesized by selectively etching a CNT-composited Co,Fe-based Prussian blue analogue and subsequent phosphorization. Benefiting from its unique 3D hollow nanoarchitecture, which offers rich porosity and abundant catalytically active sites and guarantees excellent conductivity and structural stability, the hollow CoFeP NFs/NPCNT hybrid delivered pronounced catalytic activity for oxygen evolution (or hydrogen evolution) in alkaline electrolyte, with a low overpotential of 278 (or 132) mV at 10 mA cm-2, small Tafel slope of 39.5 (or 62.9) mV dec-1 and prominent long-term stability. Therefore, when CoFeP NFs/NPCNT was employed as the cathode and anode toward overall water-splitting, it required a quite small cell voltage of only 1.56 V to afford a current density of 10 mA cm-2, and displayed outstanding electrocatalytic stability over 60 h, greatly approaching the performance of the commercial Pt/C(-)//RuO2(+) electrolyzer and outperforming most other non-noble-based electrolyzers.
Collapse
Affiliation(s)
- Wenxin Li
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | | | | | | | | | | |
Collapse
|
44
|
Wang H, Wang X, Zheng B, Yang D, Zhang W, Chen Y. Self-assembled Ni2P/FeP heterostructural nanoparticles embedded in N-doped graphene nanosheets as highly efficient and stable multifunctional electrocatalyst for water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.093] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
ZIF-67 derived hierarchical hollow sphere-like CoNiFe phosphide for enhanced performances in oxygen evolution reaction and energy storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Wang X, Chen Y, Yu B, Wang Z, Wang H, Sun B, Li W, Yang D, Zhang W. Hierarchically Porous W-Doped CoP Nanoflake Arrays as Highly Efficient and Stable Electrocatalyst for pH-Universal Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902613. [PMID: 31361084 DOI: 10.1002/smll.201902613] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Indexed: 05/23/2023]
Abstract
It is still challenging to develop high-efficiency and low-cost non-noble metal-based electrocatalysts for hydrogen evolution reaction (HER) in pH-universal electrolytes. Herein, hierarchically porous W-doped CoP nanoflake arrays on carbon cloth (W-CoP NAs/CC) are synthesized via facile liquid-phase reactions and a subsequent phosphorization process. The W-CoP NAs/CC hybrid can be directly employed as a binder-free electrocatalyst and delivers superior HER performance in pH-universal electrolytes. Especially, it delivers very low overpotentials of 89, 94, and 102 mV to reach a current density of 10 mA cm-2 in acidic, alkaline, and neutral electrolytes, respectively. Furthermore, it shows a nearly 100% Faradaic efficiency as well as superior long-term stability with no decreasing up to 36 h in pH-universal electrolytes. The outstanding electrocatalytic performance of W-CoP NAs/CC can be mainly attributed to the porous W-doped nanoflake arrays, which not only afford rich exposed active sites, but also accelerate the access of electrolytes and the diffusion of H2 bubbles, thus efficiently promoting the HER performance. This work provides a new horizon to rationally design and synthesize highly effective and stable non-noble metal phosphide-based pH-universal electrocatalysts for HER.
Collapse
Affiliation(s)
- Xinqiang Wang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yuanfu Chen
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Bo Yu
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
| | - Haiqi Wang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Baochen Sun
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Wenxin Li
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Dongxu Yang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Wanli Zhang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|