1
|
Alshraim A, Gopal TS, Alanazi N, Mr M, Alobaidi AAE, Alsaigh R, Aldosary M, Pandiaraj S, Grace AN, Alodhayb AN. Cu/Cu 2O/C nanoparticles and MXene based composite for non-enzymatic glucose sensors. NANOTECHNOLOGY 2024; 35:365704. [PMID: 38904452 DOI: 10.1088/1361-6528/ad568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Copper/Cuprous oxide/Carbon nanoparticles decorated MXene composite was prepared and subsequently examined for its potential application as a non-enzymatic glucose sensor. To carry out this, initially the Cu MOF/MXene composite was synthesised by the hydrothermal method and was annealed in an unreacted environment at different time intervals. During this process, petal like Cu MOF on MXene loses the organic ligands to form a Cu/Cu2O/C based nanoparticles on MXene. Further, an electrode was fabricated with the developed material for understanding the sensing performance by cyclic voltammetry and chronoamperometry in 0.1 M NaOH solution. Results reveal that the highest weight percentage of copper oxide in the composite (15 min of annealed material) shows a higher electro catalytic activity for sensing glucose molecules due to more active sites with good electron transfer ability in the composite. The formed composite exhibits a wide linear range of 0.001-26.5 mM, with a sensitivity of 762.53μAmM-1cm-2(0.001-10.1 mM), and 397.18μAmM-1cm-2(11.2-26.9 mM) and the limit of detection was 0.103μM. In addition to this, the prepared electrode shows a good reusability, repeatability, selectivity with other interferences, stability (93.65% after 30 days of storage), and feasibility of measuring glucose in real samples. This finding reveals that the metal oxide derived from MOF based nanoparticle on the MXene surface will promote the use of non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Asma Alshraim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tamil Selvi Gopal
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nadyah Alanazi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muthumareeswaran Mr
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amani Ali E Alobaidi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem Alsaigh
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Aldosary
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Dong Z, Zhu X, Tang J, Liao Y, Cheng X, Tang L, Fang L. An integrated smartphone-based electrochemical detection system for highly sensitive and on-site detection of chemical oxygen demand by copper-cobalt bimetallic oxide-modified electrode. Mikrochim Acta 2024; 191:343. [PMID: 38801537 DOI: 10.1007/s00604-024-06399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
A portable and integrated electrochemical detection system has been constructed for on-site and real-time detection of chemical oxygen demand (COD). The system mainly consists of four parts: (i) sensing electrode with a copper-cobalt bimetallic oxide (CuCoOx)-modified screen-printed electrode; (ii) an integrated electrochemical detector for the conversion, amplification, and transmission of weak signals; (iii) a smartphone installed with a self-developed Android application (APP) for issuing commands, receiving, and displaying detection results; and (iv) a 3D-printed microfluidic cell for the continuous input of water samples. Benefiting from the superior catalytic capability of CuCoOx, the developed system shows a high detection sensitivity with 0.335 μA/(mg/L) and a low detection limit of 5.957 mg/L for COD determination and possessing high anti-interference ability to chloride ions. Moreover, this system presents good consistency with the traditional dichromate method in COD detection of actual water samples. Due to the advantages of cost effectiveness, portability, and point-of-care testing, the system shows great potential for water quality monitoring, especially in resource-limited remote areas.
Collapse
Affiliation(s)
- Zhengrong Dong
- College of Electrical and Information Engineering, Hunan University, Changsha, 410012, China
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Xu Zhu
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jing Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Yibo Liao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Xingyang Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China.
| | - Leyuan Fang
- College of Electrical and Information Engineering, Hunan University, Changsha, 410012, China.
| |
Collapse
|
3
|
Sun S, Sun P. MOF-derived NiCo hydroxide for highly efficient non-enzymatic glucose biosensing. NANOTECHNOLOGY 2024; 35:275501. [PMID: 38537263 DOI: 10.1088/1361-6528/ad3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
An efficient and robust electrocatalyst is significant for glucose biosensing. The emergence of metal-organic framework (MOF) derived materials opens up new avenues for the development of high-performance glucose sensing catalysts. Herein, MOF derived nickel-cobalt hydroxide supported on conductive copper sheet (NiCo-OH/Cu sheet) is prepared at room temperature. The as-obtained NiCo-OH is endowed with three-dimensional network structure which enables the effective exposure of active materials, sufficient contact between glucose molecule and catalyst. The NiCo-OH/Cu sheet is revealed as good glucose electrochemical sensing material with a wide linear range of 0.05∼6.0 mM and a high sensitivity of 1340μA mM-1cm-2. Additionally, the as-fabricated NiCo-OH/Cu sheet displays good anti-interference ability and long-term stability.
Collapse
Affiliation(s)
- Shupei Sun
- College of Optoelectronics Engineering, Chengdu University of Information Technology, Chengdu, Sichuan 610225, People's Republic of China
| | - Ping Sun
- College of Optoelectronics Engineering, Chengdu University of Information Technology, Chengdu, Sichuan 610225, People's Republic of China
| |
Collapse
|
4
|
Luo J, Luo X, Gan Y, Xu X, Xu B, Liu Z, Ding C, Cui Y, Sun C. Advantages of Bimetallic Organic Frameworks in the Adsorption, Catalysis and Detection for Water Contaminants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2194. [PMID: 37570512 PMCID: PMC10421224 DOI: 10.3390/nano13152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
The binary metal organic framework (MOF) is composed of two heterometallic ions bonded to an organic ligand. Compared with monometallic MOFs, bimetallic MOFs have greatly improved in terms of structure, porosity, active site, adsorption, selectivity, and stability, which has attracted wide attention. At present, many effective strategies have been designed for the synthesis of bimetallic MOF-based nanomaterials with specific morphology, structure, and function. The results show that bimetallic MOF-based nanocomposites could achieve multiple synergistic effects, which will greatly improve their research in the fields of adsorption, catalysis, energy storage, sensing, and so on. In this review, the main preparation methods of bimetallic MOFs-based materials are summarized, with emphasis on their applications in adsorption, catalysis, and detection of target pollutants in water environments, and perspectives on the future development of bimetallic MOFs-based nanomaterials in the field of water are presented.
Collapse
Affiliation(s)
- Jun Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Xiao Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Yonghai Gan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Xiaoming Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Zhuang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Cheng Sun
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Yi J, Li X, Lv S, Zhu J, Zhang Y, Li X, Cong Y. MOF-derived CeO 2/Co 3O 4-Fe 2O 3@CC nanocomposites as highly sensitive electrochemical sensor for bisphenol a detection. CHEMOSPHERE 2023:139249. [PMID: 37331663 DOI: 10.1016/j.chemosphere.2023.139249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
A novel CeO2/Co3O4-Fe2O3@CC electrode derived from CeCo-MOFs was developed for detecting the endocrine disruptor bisphenol A (BPA). Firstly, bimetallic CeCo-MOFs were prepared by hydrothermal method, and obtained material was calcined to form metal oxides after doping Fe element. The results suggested that hydrophilic carbon cloth (CC) modified with CeO2/Co3O4-Fe2O3 had good conductivity and high electrocatalytic activity. By the analyses of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the introduction of Fe increased the current response and conductivity of the sensor, greatly increasing the effective active area of the electrode. Significantly, electrochemical test proves that the prepared CeO2/Co3O4-Fe2O3@CC had excellent electrochemical response to BPA with a low detection limit of 8.7 nM, an excellent sensitivity of 20.489 μA/μM·cm2, a linear range of 0.5-30 μM, and strong selectivity. In addition, the CeO2/Co3O4-Fe2O3@CC sensor had a high recovery rate for the detection of BPA in real tap water, lake water, soil eluent, seawater, and PET bottle samples, which showed its potential in practical applications. To sum up, the CeO2/Co3O4-Fe2O3@CC sensor prepared in this work had excellent sensing performance, good stability and selectivity for BPA, which can be well used for the detection of BPA.
Collapse
Affiliation(s)
- Jiaxin Yi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinyue Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shiwen Lv
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jining Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yi Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Parsapour F, Moradi M, Bahadoran A. Metal-organic frameworks-derived layered double hydroxides: From controllable synthesis to various electrochemical energy storage/conversion applications. Adv Colloid Interface Sci 2023; 313:102865. [PMID: 36868169 DOI: 10.1016/j.cis.2023.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Over the past years, metal-organic frameworks (MOF) have been directly used as electrodes or as a precursor for MOF-derived materials in energy storage and conversion systems. In the wide range of existing MOF derivatives, MOF-derived layered double hydroxides (LDHs) are determined to be promising materials due to their unique structure and features. However, MOF-derived LDHs (MDL) materials can suffer from insufficient intrinsic conductivity and agglomeration during formation. Various techniques and approaches were designed and applied to tackle these problems, such as using ternary LDHs, ion-doping, sulphurization, phosphorylation, selenization, direct growth, and conductive substrates. All the mentioned enhancement techniques aim to create the ideal electrode materials with maximum performance. In this review, we gathered and discussed the most recent progressive advances, different synthesis methodologies, unsolved challenges, applications, and electrochemical and electrocatalytic performance of MDL materials. We hope this work will be a reliable source for future progress and synthesis of these materials.
Collapse
Affiliation(s)
- Fateme Parsapour
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Morteza Moradi
- Department of Semiconductors, Materials and Energy Research Center (MERC), P.O. Box 31787-316, Tehran, Iran.
| | - Ashkan Bahadoran
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
8
|
Ren X, Xu Z, Zhang Z, Tang Z. Enhanced NO 2 Sensing Performance of ZnO-SnO 2 Heterojunction Derived from Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3726. [PMID: 36364502 PMCID: PMC9658193 DOI: 10.3390/nano12213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen dioxide (NO2) is the major reason for acid rain and respiratory illness in humans. Therefore, rapid, portable, and effective detection of NO2 is essential. Herein, a novel and simple method to construct a ZnO-SnO2 heterojunction is fabricated by pyrolysis of bimetallic metal organic frameworks. The sensitivity of ZnO-SnO2 heterojunction towards 0.2 ppm NO2 under 180 °C is 37, which is 3 times that of pure ZnO and SnO2. The construction of heterojunction speeds up the response-recovery process, and this kind of material exhibits lower detection limit. The construction of heterojunction can significantly improve the NO2 sensitivity. The selectivity, stability, and moisture resistance of ZnO-SnO2 heterojunction are carried out. This could enable the realization of highly selective and sensitive portable detection of NO2.
Collapse
|
9
|
Yuan Y, Yu T, Lian Y, Yuan C, Guo M. Enhanced Electrocatalytic Activity and Ultrasensitive Enzyme-Free Glucose Sensing Based on Heterogeneous Co(OH) 2 Nanosheets/CuO Microcoral Arrays via Interface Engineering. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuxi Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Ting Yu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - You Lian
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Manman Guo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|
10
|
Rezapasand S, Abbasi S, Rahmati Z, Hosseini H, Roushani M. Metal-organic frameworks-derived Zn-Ni-P nanostructures as high performance electrode materials for electrochemical sensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zhang D, Zhang X, Bu Y, Zhang J, Zhang R. Copper Cobalt Sulfide Structures Derived from MOF Precursors with Enhanced Electrochemical Glucose Sensing Properties. NANOMATERIALS 2022; 12:nano12091394. [PMID: 35564103 PMCID: PMC9102815 DOI: 10.3390/nano12091394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
Nonenzymatic electrochemical detection of glucose is popular because of its low price, simple operation, high sensitivity, and good reproducibility. Co-Cu MOFs precursors were synthesized via the solvothermal way at first, and a series of porous spindle-like Cu-Co sulfide microparticles were obtained by secondary solvothermal sulfurization, which maintained the morphology of the MOFs precursors. Electrochemical studies exhibit that the as-synthesized Cu-Co sulfides own excellent nonenzymatic glucose detection performances. Compared with CuS, Co (II) ion-doped CuS can improve the conductivity and electrocatalytic activity of the materials. At a potential of 0.55 V, the as-prepared Co-CuS-2 modified electrode exhibits distinguished performance for glucose detection with wide linear ranges of 0.001–3.66 mM and high sensitivity of 1475.97 µA·mM−1·cm−2, which was much higher than that of CuS- and Co-CuS-1-modified electrodes. The constructed sulfide sensors derived from MOF precursors exhibit a low detection limit and excellent anti-interference ability for glucose detection.
Collapse
Affiliation(s)
- Daojun Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (X.Z.); (Y.B.); (J.Z.); (R.Z.)
- Correspondence: ; Tel.: +86-372-2900040
| | - Xiaobei Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (X.Z.); (Y.B.); (J.Z.); (R.Z.)
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Yingping Bu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (X.Z.); (Y.B.); (J.Z.); (R.Z.)
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jingchao Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (X.Z.); (Y.B.); (J.Z.); (R.Z.)
| | - Renchun Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (X.Z.); (Y.B.); (J.Z.); (R.Z.)
| |
Collapse
|
12
|
Wang X, Zhai X, Yu Q, Liu X, Meng X, Wang X, Wang L. Strategies of designing electrocatalysts for seawater splitting. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Xue J, Sun Q, Li Q, Qian J. MOF-derived carbon-coated cuprous phosphide nanosheets for electrocatalytic glucose oxidation. CrystEngComm 2022; 24:3649-3655. [DOI: 10.1039/d1ce01695d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A type of carbon-coated cuprous phosphide nanosheet embedded into a MOF-derived porous carbon network (Cu-BTC-CP) presents a competitive electrochemical sensor for practical glucose sensing.
Collapse
Affiliation(s)
- Jinhang Xue
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Qiuhong Sun
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Qipeng Li
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan, 657000, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
14
|
Yang H, Wang S, Wang X, Zhang P, Yan C, Luo Y, Chen L, Li M, Fan F, Zhou Z, Li X. Grain boundary enriched CuO nanobundle for efficient non-invasive glucose sensors/fuel cells. J Colloid Interface Sci 2021; 609:139-148. [PMID: 34894548 DOI: 10.1016/j.jcis.2021.11.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Glucose oxidation reaction (GOR) plays a significant role in glucose fuel cells anode and glucose sensors. Therefore, optimizing the GOR catalyst nanostructure is auxiliary to their efficient operation. In this study, we present a cascade-assembled strategy to prepare CuO nanobundles (CuO-NB) with high-density and homogenous grainboundaries (GBs). The essence of activity in GOR that depended on GBs are thoroughly investigated. The increased glucose diffusion coefficient of CuO-NB means that GBs has a faster glucose mass transfer, which is attributed to the terraces in GBs dislocation surface. Furthermore, the accumulation of electrons on GBs makes the glucose adsorption increased and the free energy of dehydrogenation step decreased, leading to a lower glucose oxidation barrier. Therefore, CuO-NB is appropriate for non-invasive glucose detection and glucose fuel cells. This study sheds new light on the GBs effect in GOR and paves the way for developing high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Huijuan Yang
- Institute of Advanced Electrochemical Energy, Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - ShengBao Wang
- Institute of Advanced Electrochemical Energy, Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Xingpu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
| | - Pengyang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Yan
- Institute of Advanced Electrochemical Energy, Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Yangyang Luo
- Institute of Advanced Electrochemical Energy, Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Lina Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mengjiao Li
- Institute of Advanced Electrochemical Energy, Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Fan Fan
- Institute of Advanced Electrochemical Energy, Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Zhiyou Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xifei Li
- Institute of Advanced Electrochemical Energy, Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
| |
Collapse
|
15
|
Li J, Zhuang Z, Guo Z, Liu Z, Huang X. Framework-derived Fe2O3/Mn3O4 nanocubes as electrochemical catalyst for simultaneous analysis of Cu(II) and Hg(II). Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Sun S, Du Q, Shi N, Liao X, Yin G. Facile synthesis of Cu/Co-ZIF nanoarrays for non-enzymatic glucose detection. NANOTECHNOLOGY 2021; 32:475508. [PMID: 34375956 DOI: 10.1088/1361-6528/ac1c23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Cu/Co-ZIF nanoflake arrays on carbon cloth are fabricated by controlling the introducing of Cu2+ions during the growth of Co-ZIF. The Cu/Co-ZIF-20 electrode prepared with 20 mM Cu2+possesses large electrochemically active surface area and bimetallic active sites, which can be revealed by cyclic voltammetry tests. The amperometrici-tmeasurements demonstrate that the Cu/Co-ZIF-20 electrode displays a wide linear range from 0.05 mM to 6.0 mM, and a high sensitivity of 1.03 mA mM-1cm-2. Good selectivity, repeatability and practical applicability indicate its promising application in enzyme-free glucose sensing.
Collapse
Affiliation(s)
- Shupei Sun
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Qian Du
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Nianfeng Shi
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
18
|
Liu S, Zeng W, Guo Q, Li Y. Facile synthesis of CuCo 2O 4@NiCo 2O 4 hybrid nanowire arrays on carbon cloth for a multicomponent non-enzymatic glucose sensor. NANOTECHNOLOGY 2020; 31:495708. [PMID: 32717727 DOI: 10.1088/1361-6528/aba97a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of hierarchical heterogeneous structures with rational components is considered as a promising method to enhance the properties of electrocatalyst. Binary metal oxides, with high electrochemical activity, have attracted considerable interest in glucose determination. In this work, we synthesized the CuCo2O4@NiCo2O4 hybrid structure on conductive carbon cloth (CC) via a simple two-step hydrothermal process and investigated its catalytic ability toward glucose. The two individual components that make up this hybrid electrode have good electrical conductivity and excellent catalytic properties for glucose, so the smart combination of these two active materials can provide more catalytic sites and sufficient redox couples for the glucose oxidation. As a result, the CuCo2O4@NiCo2O4 modified CC presented superior glucose sensing properties, including ultrahigh sensitivity, fast response time, wide linear range and acceptable detection limit. Besides, the sample also exhibited good selectivity for substances in human blood that interfere with glucose detection, such as UA, AA, fructose, sucrose and KCl. The potential of the CuCo2O4@NiCo2O4/CC electrode for practical application was investigated by measuring the glucose concentration in real serum samples. These results prove that the construction of hierarchical ordered structure is conducive to the improvement of glucose sensor.
Collapse
Affiliation(s)
- Shilin Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Qi Guo
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Yanqiong Li
- School of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 400030, People's Republic of China
| |
Collapse
|
19
|
Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213222] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Wang L, Miao X, Qu Y, Duan C, Wang B, Yu Q, Gao J, Song D, Li Y, Yin Z. Rattle-type Au@NiCo LDH hollow core-shell nanostructures for nonenzymatic glucose sensing. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113810] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Luo Y, Wang Q, Li J, Xu F, Sun L, Bu Y, Zou Y, Kraatz HB, Rosei F. Tunable hierarchical surfaces of CuO derived from metal–organic frameworks for non-enzymatic glucose sensing. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00104j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile thermal treatment is conducted to prepare nanosphere stacking CuO derived from Cu-MOF, which achieves good glucose sensing performance and is expected to be effective for developing non-enzyme and non-invasive glucose sensors.
Collapse
Affiliation(s)
- Yumei Luo
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
- School of Electronic Engineering and Automation
| | - Qingyong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology
| | - Jinghua Li
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
| | - Fen Xu
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
| | - Lixian Sun
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
- School of Electronic Engineering and Automation
| | - Yiting Bu
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
| | - Yongjin Zou
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy
- Guangxi Key Laboratory of Information Materials
- Guilin 541004
- P.R. China
| | - Heinz-Bernhard Kraatz
- Department Physics & Environment Science
- University of Toronto Scarborough
- Toronto
- Canada
| | - Federico Rosei
- Institut National de la Recherche Scientifique—Énergie
- Matériaux et Télécommunications
- QC
- Canada
| |
Collapse
|
22
|
Xie W, Yang G, Xu M, Bo X. Universal laser-assisted growth of transition metal nanoparticles on a flexible graphene electrode for a nonenzymatic glucose sensor. NEW J CHEM 2020. [DOI: 10.1039/d0nj04200e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A universal laser-assisted method was used for the construction of transition metal nanoparticles on graphene as a glucose sensor.
Collapse
Affiliation(s)
- Wuyun Xie
- School of Physics
- Northeast Normal University
- Changchun
- China
- Jilin Province Key Laboratory of the Advanced Energy Development and The Innovative Application
| | - Guang Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Mingqi Xu
- School of Physics
- Northeast Normal University
- Changchun
- China
- Jilin Province Key Laboratory of the Advanced Energy Development and The Innovative Application
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
23
|
Liu Y, Shi WJ, Lu YK, Liu G, Hou L, Wang YY. Nonenzymatic Glucose Sensing and Magnetic Property Based On the Composite Formed by Encapsulating Ag Nanoparticles in Cluster-Based Co-MOF. Inorg Chem 2019; 58:16743-16751. [PMID: 31794201 DOI: 10.1021/acs.inorgchem.9b02889] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Utilizing the oxygen-bridged 5,5'-oxidiisophthalic acid (H4L) linker, one Co(II)-based 3D porous MOF {[Co5(L)2(OH)2(OH2)2(H2O)4]·2DMF·H2O}n (1) with pentanuclear [Co5(μ3-OH)2(μ2-OH2)2]8+ cluster was prepared. The glassy carbon electrode was modified by 1, and the obtained electrode revealed electrocatalytic performance for glucose oxidation. The porous MOF matrix is beneficial for dispersing Ag nanoparticles evenly in the interior cages or channels, so Ag@1 composite composed of both Ag nanoparticles and MOF was further prepared through deposition-reduction method to enhance electrocatalytic activity. The result demonstrates that the glucose oxidation by Ag@1 was greatly increased with low detection limit (1.32 μM) and good selectivity and sensitivity (0.135 μA μM-1), which promote the application of MOF-template porous composites as advanced electrochemical sensor materials. Furthermore, 1 shows an interesting magnetic spin-glass slow dynamics for the existing of peculiar pentanuclear Co(II) clusters.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China.,Shaanxi Institute of International Trade& Commerce , Xi'an 712046 , PR China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China
| | - Yu-Ke Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China
| | - Ge Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China
| |
Collapse
|