1
|
Tomšík E, Boahene S, Dragounová KA, Pfeifer R, Sharma DK, Szabó O, Walterová Z, Potocký Š, Kromka A. Enhanced Electrochemical Performance of Polyaniline-Boron Doped Diamond Electrode for Supercapacitor Applications. SMALL METHODS 2025; 9:e2401523. [PMID: 39757489 PMCID: PMC12020348 DOI: 10.1002/smtd.202401523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Understanding how to tune the properties of electroactive materials is a key parameter for their applications in energy storage systems. This work presents a comprehensive study in tailoring polyaniline (PANI) suspensions by acid-assisted polymerization method and their subsequent deposition on boron-doped diamond (BDD) supports with low/high B concentrations. The porous or densely packed morphology of PANI is successfully controlled by varying the monomer-to-initiator ratio. The interaction between PANI and BDDs leads to the shift in oxidation and reduction potentials, and the high B doping resulted in the reduction of the oxidation potentials. Notably, the highest specific capacitance of 958 F g-1, which represents 90% of the theoretical capacitance, is recorded for the support with relatively low B content. Moreover, PANI obtained by slow kinetic has a stronger interaction with the B-doped diamond support, which is confirmed by electrochemical impedance spectroscopy. This study provides valuable insights for optimizing PANI suspension preparation methods and selecting appropriate boron doping concentrations in nanodiamond supports for composite electrodes in energy storage applications.
Collapse
Affiliation(s)
- Elena Tomšík
- Institute of Macromolecular Chemistry AS CRHeyrovsky nam. 2Prague 6162 00Czech Republic
| | - Stephen Boahene
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
- Czech Technical University in PragueFaculty of Electrical EngineeringTechnická 2Prague162 00Czech Republic
| | - Kateřina Aubrechtová Dragounová
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
- Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PragueBřehová 7Praha 1115 19Czech Republic
| | - Rene Pfeifer
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
| | - Dhananjay Kumar Sharma
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
| | - Ondrej Szabó
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
| | - Zuzana Walterová
- Institute of Macromolecular Chemistry AS CRHeyrovsky nam. 2Prague 6162 00Czech Republic
| | - Štěpán Potocký
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
- Czech Technical University in PragueFaculty of Electrical EngineeringTechnická 2Prague162 00Czech Republic
| | - Alexander Kromka
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
| |
Collapse
|
2
|
Zhou Y, Cai Y, Tu T, Zhang S, Li T, Fang L, Wang D, Liang Y, Wang Z, Jiang Y, Zhou C, Liang B. Expanded Carbon Nanotube Fiber at the Liquid-Air Interface for High-Performance Fiber-Based Supercapacitors and Electrochemical Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41839-41849. [PMID: 37590959 DOI: 10.1021/acsami.3c06815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Carbon nanotube fibers (CNTFs) are widely utilized in flexible and wearable electronics due to their outstanding electrical and mechanical properties. However, the spinning process of CNTFs has limited the CNTs from exposure, leading to an ultralow usage efficiency of individual CNTs. Here, we propose an electrochemical expansion strategy of a single CNTF at the liquid-air interface, forming a macroscopic spindle-shaped CNTF (SS-CNTF) with an enlarged volume of up to 5000-fold upon the spindle. The obtained spindle-shaped structure endows CNTF with a high specific surface area together with excellent conductivity and good mechanical properties. Therefore, the SS-CNTF-based devices exhibit outstanding performances both in energy storage (electrical double-layer supercapacitor, energy density: 11.22 Wh kg-1, power density: 203.9 kW kg-1) and electrochemical sensing (ascorbic acid: 1.26 μA μM-1 cm-2; dopamine: 103.91 μA μM-1 cm-2; uric acid: 11.53 μA μM-1 cm-2). The novel architecture of SS-CNTF prepared by one-step electrochemical expansion at the liquid-air interface enabled its high performance in multiple applications, providing new insight into the development of CNTF-based devices.
Collapse
Affiliation(s)
- Yue Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yu Cai
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tingting Tu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Shanshan Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tianyu Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P. R. China
| | - Dong Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Zhaoyang Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yu Jiang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Congcong Zhou
- National Engineering Research Center for Innovation and Application of Minimally Invasive Devices, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P. R. China
| | - Bo Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, P. R. China
| |
Collapse
|
3
|
Gudkov MV, Stolyarova DY, Shiyanova KA, Mel’nikov VP. Polymer Composites with Graphene and Its Derivatives as Functional Materials of the Future. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Huang ZJ, Lu XL, Chi HZ, Zhang W, Xiong Q, Qin H. Tuning the Surface Chemical State of Graphene Oxide Sheets for the Self‐Assembly of Graphene Hydrogel for Capacitive Energy Storage. ChemElectroChem 2021. [DOI: 10.1002/celc.202101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhao Jie Huang
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Xin liang Lu
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Hong Zhong Chi
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Wen Zhang
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Qinqin Xiong
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Haiying Qin
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| |
Collapse
|
5
|
Wu X, Zhang H, He C, Wu C, Huang KJ. High-power-energy proton supercapacitor based on interface-adapted durable polyaniline and hexagonal tungsten oxide. J Colloid Interface Sci 2021; 601:727-733. [PMID: 34091319 DOI: 10.1016/j.jcis.2021.05.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/06/2023]
Abstract
Supercapacitors are high power energy storage devices, however, their application are remain limited by the low energy density. Developing high capacity electrode materials and constructing devices with high operating voltage are effective ways to solve this problem. Herein, performance of polyaniline (PANI) electrode materials is dramatically enhanced by engineering robust PANI/carbon interfaces, through assembling PANI nanorod array on rose petals derived carbon network (RPDCN). The structure of the PANI is optimized by adjusting the concentration of the aniline precursor. The unique structure enables the prepared PANI/RPDCN composite show a high capacitance of 636 F g-1 at 0.5 A g-1, based on the total weight of PANI and RPDCN substrate. The robust interface effectively prolonged the composite electrode stably cycled for over 2000 cycles at 2 A g-1 with a capacity retention of 89%. When coupled with a hexagonal tungsten oxide (h-WO3) anode, a high-power asymmetric proton supercapacitor with high energy densities (29.0 Wh kg-1/0.61 kW kg-1 and 21.4 Wh kg-1/19.51 kW kg-1) was assembled. This work provides an effective and eco-friendly route toward superior PANI electrodes and proposes a promising high-power energy storage system using proton as working ion.
Collapse
Affiliation(s)
- Xu Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China; Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Chongqing 400715, China
| | - Huanhuan Zhang
- Collaborative Innovation Center of Henan Province for Energy-Saving Building Materials, Xinyang Normal University, Xinyang 464000, China
| | - Chuan He
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Chen Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
6
|
Jayababu N, Jo S, Kim Y, Kim D. Preparation of NiO decorated CNT/ZnO core-shell hybrid nanocomposites with the aid of ultrasonication for enhancing the performance of hybrid supercapacitors. ULTRASONICS SONOCHEMISTRY 2021; 71:105374. [PMID: 33128949 PMCID: PMC7786525 DOI: 10.1016/j.ultsonch.2020.105374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Supercapacitor (SC) electrodes fabricated with the combination of carbon nanotubes (CNTs) and metal oxides are showing remarkable advancements in the electrochemical properties. Herein, NiO decorated CNT/ZnO core-shell hybrid nanocomposites (CNT/ZnO/NiO HNCs) are facilely synthesized by a two-step solution-based technique for the utilization in hybrid supercapacitors. Benefitting from the synergistic advantages of three materials, the CNT/ZnO/NiO HNCs based electrode has evinced superior areal capacity of ~67 µAh cm-2 at a current density of 3 mA cm-2 with an exceptional cycling stability of 112% even after 3000 cycles of continuous operation. Highly conductive CNTs and electrochemically active ZnO contribute to the performance enhancement. Moreover, the decoration of NiO on the surface of CNT/ZnO core-shell increases the electro active sites and stimulates the faster redox reactions which play a vital role in augmenting the electrochemical properties. Making the use of high areal capacity and ultra-long stability, a hybrid supercapacitor (HSC) was assembled with CNT/ZnO/NiO HNCs coated nickel foam (CNT/ZnO/NiO HNCs/NF) as positive electrode and CNTs coated NF as negative electrode. The fabricated HSC delivered an areal capacitance of 287 mF cm-2 with high areal energy density (67 µWh cm-2) and power density (16.25 mW cm-2). The combination of battery type CNT/ZnO/NiO HNCs/NF and EDLC type CNT/NF helped in holding the capacity for a long period of time. Thus, the systematic assembly of CNTs and ZnO along with the NiO decoration enlarges the application window with its high rate electrochemical properties.
Collapse
Affiliation(s)
- Nagabandi Jayababu
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Seungju Jo
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Youngsu Kim
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Daewon Kim
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
| |
Collapse
|
7
|
Hou X, Xu H, Zhen T, Wu W. Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Carbon Nanotube Sheet-Synthesis and Applications. NANOMATERIALS 2020; 10:nano10102023. [PMID: 33066526 PMCID: PMC7656311 DOI: 10.3390/nano10102023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/30/2023]
Abstract
Decades of extensive research have matured the development of carbon nanotubes (CNTs). Still, the properties of macroscale assemblages, such as sheets of carbon nanotubes, are not good enough to satisfy many applications. This paper gives an overview of different approaches to synthesize CNTs and then focuses on the floating catalyst method to form CNT sheets. A method is also described in this paper to modify the properties of macroscale carbon nanotube sheets produced by the floating catalyst method. The CNT sheet is modified to form a carbon nanotube hybrid (CNTH) sheet by incorporating metal, ceramic, or other types of nanoparticles into the high-temperature synthesis process to improve and customize the properties of the traditional nanotube sheet. This paper also discusses manufacturing obstacles and the possible commercial applications of the CNT sheet and CNTH sheet. Manufacturing problems include the difficulty of injecting dry nanoparticles uniformly, increasing the output of the process to reduce cost, and safely handling the hydrogen gas generated in the process. Applications for CNT sheet include air and water filtering, energy storage applications, and compositing CNTH sheets to produce apparel with anti-microbial properties to protect the population from infectious diseases. The paper also provides an outlook towards large scale commercialization of CNT material.
Collapse
|
9
|
Zhou G, Yang L, Li W, Chen C, Liu Q. A Regenerable Hydrogel Electrolyte for Flexible Supercapacitors. iScience 2020; 23:101502. [PMID: 32916631 PMCID: PMC7490843 DOI: 10.1016/j.isci.2020.101502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Easy regenerability of core components such as electrode and electrolyte is highly required in advanced electrochemical devices. This work reports a reliable, regenerable, and stretchable hydrogel electrolyte based on ionic bonds between polyacrylic acid (PAA) and polyallylamine (PAH). PAA-PAH electrolyte (1M LiCl addition) exhibits high ionic conductivity (0.050 S·cm-1) and excellent mechanical property (fracture strain of 1,688%). Notably, the electrolyte can be regenerated to any desired shape under mild conditions and remains 96% and 90% of the initial ionic conductivity after the first and second regeneration, respectively. PAA-PAH/LiCl-based supercapacitor exhibits nearly 100% capacitance retention upon rolling, stretching, and 5,000 charge-discharge cycles, whereas the regenerated device holds 97.6% capacitance of the initial device and 90.9% after 5,000 cycles. This low-cost, high-efficiency, and regenerable hydrogel electrolyte reveals very promising use in solid-state/flexible supercapacitors and possibly becomes a standard commercial hydrogel electrolyte for sustainable electrochemical energy devices.
Collapse
Affiliation(s)
- Guanbing Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Leyi Yang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Weijun Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Qiao Liu
- Institute of Materials, Ningbo University of Technology, Ningbo 315016, China
| |
Collapse
|
10
|
Chen C, Wang H, Xiao Q, Zhao M, Li Y, Zhao G, Xie Y, Chen X, Zhu G. Porous Carbon Hollow Rod for Supercapacitors with High Energy Density. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Chong Chen
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Hongyan Wang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Qingguang Xiao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Mingkun Zhao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Yanjiang Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Guangzhen Zhao
- Energy Resources and Power Engineering College, Northeast Electric Power University, Jilin 132012, P. R. China
| | - Yong Xie
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| | - Xiangying Chen
- School of Chemical Engineering, Anhui Key Laboratory of Controllable Chemistry Reaction & Material Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, P. R. China
| |
Collapse
|