1
|
Pradhan K, Singh U, Shukla S, Duttagupta SP, Saxena S. Zinc ferrite nanoparticles as electrode material for supercapacitors. NANOTECHNOLOGY 2025; 36:155401. [PMID: 39919320 DOI: 10.1088/1361-6528/adb3ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/07/2025] [Indexed: 02/09/2025]
Abstract
In the realm of sustainable and renewable nanotechnology, supercapacitors have appeared as the dominant solution for energy conversion and storage. Ferrites have been widely explored in magnetic, electronic and microwave devices, and are now being explored for applications in energy storage devices due to the possibility of achieving fast and reversible surface Faradic reactions. From this perspective, a simple and inexpensive chemical co-precipitation method was used to synthesize ultrasmall ZnFe2O4nanoparticles (NPs). As an electrode material the ZnFe2O4NPs show a gravimetric capacitance of 186.6 F g-1at a current density of 1 A g-1in 1 M H2SO4. Furthermore, the ZnFe2O4NP-based electrode shows exceptional capacitive retention of 98% over 1000 cycles at a current density of 3 A g-1. An asymmetric ZnFe2O4NP//NiO NP device was fabricated, which achieved a power density of 302.3 W kg-1at a current density of 1.5 A g-1and an energy density of 14.85 W h kg-1. After 1500 cycles, the device demonstrated capacity retention of 99.4% at 1.5 A g-1in long-term stability testing with 100% efficiency. Our study suggests that ZnFe2O4NPs are promising as a material for future energy storage applications.
Collapse
Affiliation(s)
- Kousik Pradhan
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| | - Umisha Singh
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| | - Shobha Shukla
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| | - Siddhartha P Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| | - Sumit Saxena
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| |
Collapse
|
2
|
Tan LL, Mohamad NS, Hassan NI, Goh CT. Electrochemically reduced graphene oxide integrated with carboxylated-8-carboxamidoquinoline: A platform for highly sensitive voltammetric detection of Zn(II) ion by screen-printed carbon electrode. PLoS One 2025; 20:e0315974. [PMID: 39919092 PMCID: PMC11805387 DOI: 10.1371/journal.pone.0315974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/02/2024] [Indexed: 02/09/2025] Open
Abstract
Zinc has been demonstrated to boost immune response during SAR-CoV-2 infection, where it prevents coronavirus multiplication. Clinical investigations have testified to its beneficial effects on respiratory health and its deficiency may reduce immune function. A highly sensitive detection of Zn(II) ion via differential pulse voltammetry (DPV) utilizing an environmentally friendly modified screen-printed carbon electrode (SPCE) of electrochemically reduced graphene oxide (ErGO) embedded with carboxylated-8-carboxamidoquinoline (CACQ) as Zn(II) chelating ligand. The green CACQ/ErGO-modified SPCE was characterized by spectroscopy techniques, such as Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and field-emission scanning electron microscopy with energy dispersive X-ray (FESEM-EDX). The modified electrode-solution interface was studied by electrochemical cyclic voltammetry (CV) and DPV methods. The CACQ-modified wrinkled ErGO electrode conferred a large surface-to-volume ratio with multiple binding sites resulting in greater opportunity for multiple dative covalent binding events with Zn(II) via coordination chemistry, and considerably accelerated the electron transfer rate at the electrode surface. The green Zn(II) sensor demonstrated a quick response time (60 s), broad linear range [1 pM-1 μM Zn(II) ion], a limit of detection (LOD) of 0.53 pM, 35 days of storage period (≥80% of its initial response retained), good reproducibility [relative standard deviation (RSD) = 3.4%], and repeatability (RSD = 4.4%). The developed electrode was applied to determine Zn(II) ion concentration in dietary supplement samples, and the results were in good agreement with those obtained from inductively coupled plasma-mass spectrometry (ICP-MS).
Collapse
Affiliation(s)
- Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Malaysia
| | - Nur Syamimi Mohamad
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Malaysia
| | - Choo Ta Goh
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Ekwere P, Ndipingwi M, Nolly C, Ikpo C, Iwuoha E. Microwave synthesis of antimony oxide graphene nanoparticles - a new electrode material for supercapacitors. NANOSCALE ADVANCES 2023; 5:5137-5153. [PMID: 37705786 PMCID: PMC10496916 DOI: 10.1039/d3na00514c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
For the first time, antimony oxide nanoparticles were produced using a microwave technique and evaluated as a supercapacitor electrode. The specific capacitance derived from the material's galvanostatic charge-discharge curve was 98 F g-1 in 1 M Li2SO4 electrolyte at 0.1 A g-1 current density. The charge storage mechanism visible in the CV curve is nearly rectangular and identical to the EDLC charge storage mechanism. Additionally, antimony species were chemically attached to graphene oxide using an antimony(iii) chloride precursor and subsequently microwave aided procedures were used to convert the antimony species to SbO-G nanocomposites. The results of energy-dispersive X-ray spectroscopy demonstrated the pure character of the produced material. In a three-electrode cell arrangement, the resulting composite was electrochemically characterized. The cyclic voltammogram results showed that among the pristine SbO, graphene, and SbO-G materials, SbO-G had a higher specific capacitance value of 37.58 F g-1, at a scan rate of 10 mV s-1. The material has also demonstrated good conductivity characteristics based on electrochemical impedance spectroscopy research. After 3500 galvanostatic charge-discharge cycles, the material had excellent cycling stability of ∼100%. All the remarkable capacitive properties demonstrated by this material indicate that it can be a viable choice in the field of energy storage devices.
Collapse
Affiliation(s)
- Precious Ekwere
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape Bellville 7535 Cape Town South Africa
| | - Miranda Ndipingwi
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape Bellville 7535 Cape Town South Africa
| | - Christopher Nolly
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape Bellville 7535 Cape Town South Africa
| | - Chinwe Ikpo
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape Bellville 7535 Cape Town South Africa
| | - Emmanuel Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape Bellville 7535 Cape Town South Africa
| |
Collapse
|
4
|
Nguyen TN, Thi Pham N, Ngo DH, Kumar S, Cao XT. Covalently Functionalized Graphene with Molecularly Imprinted Polymers for Selective Adsorption and Electrochemical Detection of Chloramphenicol. ACS OMEGA 2023; 8:25385-25391. [PMID: 37483252 PMCID: PMC10357450 DOI: 10.1021/acsomega.3c02839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
In this report, we have presented a novel route to attach molecularly imprinted polymers (MIPs) on the surface of reduced graphene oxide (rGO) through covalent bonding. First, the surface of rGO was modified with maleic anhydride (MA) via a Diels-Alder reaction using a deep eutectic solvent (DES). Next, 3-propyl-1-vinylimidazolium molecular units were anchored and polymerized in the presence of ethylene glycol dimethacrylate (EGDMA) using chloramphenicol (CAP) as the template. Primarily, we investigated the effect of the molar ratio of individual precursors on the adsorption capacity of synthesized materials and accordingly fabricated the electrochemical sensor for CAP detection. Electrochemical results evidenced that the covalent bonding of MIP units enhanced the sensitivity of the respective sensor toward CAP in water as well as in real honey samples with high selectivity, stability, and reproducibility. This synthesis strategy involves the covalent binding of MIP on rGO materials via click chemisty under sonication power excluding harmful solvents and energy-intensive processes and thus could be a motivation for developing future electrochemical sensors through similar "green" routes.
Collapse
Affiliation(s)
- Thi Nhat
Thang Nguyen
- Faculty
of Chemical Engineering, Industrial University
of Ho Chi Minh City, Ho Chi
Minh City 700000, Vietnam
| | - Nam Thi Pham
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Dai-Hung Ngo
- Thu
Dau Mot University, Thu Dau
Mot City, Binh Duong 820000, Vietnam
| | - Subodh Kumar
- Department
of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Xuan Thang Cao
- Faculty
of Chemical Engineering, Industrial University
of Ho Chi Minh City, Ho Chi
Minh City 700000, Vietnam
| |
Collapse
|
5
|
Obayomi KS, Lau SY, Danquah MK, Zhang J, Chiong T, Takeo M, Jeevanandam J. Novel Concepts for Graphene-Based Nanomaterials Synthesis for Phenol Removal from Palm Oil Mill Effluent (POME). MATERIALS (BASEL, SWITZERLAND) 2023; 16:4379. [PMID: 37374562 DOI: 10.3390/ma16124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
In recent years, the global population has increased significantly, resulting in elevated levels of pollution in waterways. Organic pollutants are a major source of water pollution in various parts of the world, with phenolic compounds being the most common hazardous pollutant. These compounds are released from industrial effluents, such as palm oil milling effluent (POME), and cause several environmental issues. Adsorption is known to be an efficient method for mitigating water contaminants, with the ability to eliminate phenolic contaminants even at low concentrations. Carbon-based materials have been reported to be effective composite adsorbents for phenol removal due to their excellent surface features and impressive sorption capability. However, the development of novel sorbents with higher specific sorption capabilities and faster contaminant removal rates is necessary. Graphene possesses exceptionally attractive chemical, thermal, mechanical, and optical properties, including higher chemical stability, thermal conductivity, current density, optical transmittance, and surface area. The unique features of graphene and its derivatives have gained significant attention in the application of sorbents for water decontamination. Recently, the emergence of graphene-based adsorbents with large surface areas and active surfaces has been proposed as a potential alternative to conventional sorbents. The aim of this article is to discuss novel synthesis approaches for producing graphene-based nanomaterials for the adsorptive uptake of organic pollutants from water, with a special focus on phenols associated with POME. Furthermore, this article explores adsorptive properties, experimental parameters for nanomaterial synthesis, isotherms and kinetic models, mechanisms of nanomaterial formation, and the ability of graphene-based materials as adsorbents of specific contaminants.
Collapse
Affiliation(s)
- Kehinde Shola Obayomi
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Tung Chiong
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
| | - Masahiro Takeo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan
| | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
6
|
Awais Ahmad S, Zia Ullah Shah M, Arif M, Sana Ullah Shah M, Ullah E, Shah A, Sajjad M, Aftab J, Song P. Rational design of a novel MnO2-FeSe2 nanohybrid with nanowires/cubic architecture as promising supercapattery electrode materials. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
7
|
An optical and electrochemical sensor based on L-arginine functionalized reduced graphene oxide. Sci Rep 2022; 12:19398. [PMID: 36371538 PMCID: PMC9653396 DOI: 10.1038/s41598-022-23949-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
The electrochemical and photochemical properties of graphene derivatives could be significantly improved by modifications in the chemical structure. Herein, reduced graphene oxide (RGO) was functionalized with L-arginine (L-Arg) by an amidation reaction between the support and amino acid. Deposition of a powerful ligand, L-Arg, on the optically active support generated an effective optical chemosensor for the determination of Cd(II), Co(II), Pb(II), and Cu(II). In addition, L-Arg-RGO was used as an electrode modifier to fabricate L-Arg-RGO modified glassy-carbon electrode (L-Arg-RGO/GCE) to be employed in the selective detection of Pb(II) ions by differential pulse anodic stripping voltammetry (DP-ASV). L-Arg-RGO/GCE afforded better results than the bare GCE, RGO/GCE, and L-Arg functionalized graphene quantum dot modified GCE. The nanostructure of RGO, modification by L-Arg, and homogeneous immobilization of resultant nanoparticles at the electrode surface are the reasons for outstanding results. The proposed electrochemical sensor has a wide linear range with a limit of detection equal to 0.06 nM, leading to the easy detection of Pb(II) in the presence of other cations. This research highlighted that RGO as a promising support of optical, and electrochemical sensors could be used in the selective, and sensitive determination of transition metals depends on the nature of the modifier. Moreover, L-Arg as an abundant amino acid deserves to perch on the support for optical, and electrochemical determination of transition metals.
Collapse
|
8
|
Wang W, Nadagouda MN, Mukhopadhyay SM. Advances in Matrix-Supported Palladium Nanocatalysts for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3593. [PMID: 36296782 PMCID: PMC9612339 DOI: 10.3390/nano12203593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Advanced catalysts are crucial for a wide range of chemical, pharmaceutical, energy, and environmental applications. They can reduce energy barriers and increase reaction rates for desirable transformations, making many critical large-scale processes feasible, eco-friendly, energy-efficient, and affordable. Advances in nanotechnology have ushered in a new era for heterogeneous catalysis. Nanoscale catalytic materials are known to surpass their conventional macro-sized counterparts in performance and precision, owing it to their ultra-high surface activities and unique size-dependent quantum properties. In water treatment, nanocatalysts can offer significant promise for novel and ecofriendly pollutant degradation technologies that can be tailored for customer-specific needs. In particular, nano-palladium catalysts have shown promise in degrading larger molecules, making them attractive for mitigating emerging contaminants. However, the applicability of nanomaterials, including nanocatalysts, in practical deployable and ecofriendly devices, is severely limited due to their easy proliferation into the service environment, which raises concerns of toxicity, material retrieval, reusability, and related cost and safety issues. To overcome this limitation, matrix-supported hybrid nanostructures, where nanocatalysts are integrated with other solids for stability and durability, can be employed. The interaction between the support and nanocatalysts becomes important in these materials and needs to be well investigated to better understand their physical, chemical, and catalytic behavior. This review paper presents an overview of recent studies on matrix-supported Pd-nanocatalysts and highlights some of the novel emerging concepts. The focus is on suitable approaches to integrate nanocatalysts in water treatment applications to mitigate emerging contaminants including halogenated molecules. The state-of-the-art supports for palladium nanocatalysts that can be deployed in water treatment systems are reviewed. In addition, research opportunities are emphasized to design robust, reusable, and ecofriendly nanocatalyst architecture.
Collapse
Affiliation(s)
- Wenhu Wang
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA
| | | | - Sharmila M. Mukhopadhyay
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA
- Department of Mechanical Engineering, The University of Maine, Orono, ME 04469, USA
| |
Collapse
|
9
|
de Oliveira JPJ, Hiranobe CT, Torres GB, Dos Santos RJ, Paim LL. Determination of Cr(VI) in leather residues using graphite/paraffin composite electrodes modified with reduced graphene oxide nanosheets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155318. [PMID: 35452736 DOI: 10.1016/j.scitotenv.2022.155318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
In this study, we determined the Cr(VI) in samples of tanned leather residues by differential pulse voltammetry (DPV) using graphite/paraffin composite electrodes modified with reduced graphene oxide nanosheets (referred to as GPEs/nsRGO). After the modification, the composite electrodes were characterized by two electrochemical techniques (i.e., cyclic voltammetry, CV, and electrochemical impedance spectroscopy, EIS), scanning electron microscopy, and Raman spectroscopy. The electroanalytical method was applied using the GPEs/nsRGO. An analytical curve was obtained in a Clark-Lubs buffer solution (pH = 1), with a linear concentration range from 25.0 to 392.0 μmol L-1 and a limit of detection (LOD) of 1.01 μmol L-1. The GPEs/nsRGO showed good reproducibility in their manufacturing process and good response repeatability with an RSD of 4.59% over twelve measurements. These composite electrodes showed excellent selectivity, which was demonstrated by analyses in the presence of metal ions (Ca2+, Zn2+, Mg2+, Fe3+, Co2+, Na+, and Cu2+) that did not interfere in the analysis of Cr(VI). The GPEs/nsRGO were applied to the determination of Cr(VI) in real samples of wet-blue leather and leather ash using DPV. This approach was validated using the sample recovery method, where it presented values from 95.6 to 108.2%. The proposed method showed satisfactory results compared to the literature and can be considered a good alternative for the determination of Cr(VI) in aqueous samples.
Collapse
Affiliation(s)
- João P J de Oliveira
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil; Brazilian Renewable Energies, School of Electrical and Computer Engineering, University of Campinas (Unicamp), Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil
| | - Carlos T Hiranobe
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil
| | - Giovanni B Torres
- Instituto Tecnológico Metropolitano, Programa de Ingeniería de Diseño Industrial, Medellín, Antioquia, Colombia
| | - Renivaldo J Dos Santos
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil
| | - Leonardo L Paim
- São Paulo State University (Unesp), Faculty of Engineering and Sciences, Campus Rosana, 1881 dos Barrageiros, Av., 19274-000 Rosana, SP, Brazil.
| |
Collapse
|
10
|
Li X, Yan Y, Li X, Mu L, Zhao J, Yao M, Hu X. Humic acids alleviate the toxicity of reduced graphene oxide modified by nanosized palladium in microalgae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113794. [PMID: 35738107 DOI: 10.1016/j.ecoenv.2022.113794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The use of graphene-family materials modified by nanosized palladium (Pd/GFMs) has intensified rapidly in various fields; however, the effects of environmental factors (e.g., natural organic matter (NOM)) on the transformation and ecotoxicity of Pd/GFMs remain largely unknown. In this study, reduced graphene oxide modified by nanosized Pd (Pd/rGO) was incubated with humic acid (HA) under light irradiation for 56 d to explore the effects of NOM on the physicochemical transformations (e.g., defects, surface charges and dispersity) and biological toxicity (e.g., growth inhibition, oxidative stress and ultrastructural damage on algae cells) of Pd/GFMs. The results revealed that HA increased the defects and dispersity of Pd/rGO. Growth inhibition, damage to cellular ultrastructures, and oxidative stress in microalgae cells were induced by Pd/rGO, and corresponding defense responses (e.g., superoxide dismutase, peroxidase and glutathione) were activated. HA diminished the above defense responses in microalgae triggered by Pd/rGO by regulating GSH metabolism and the alanine biosynthesis pathway. In the presence of HA, cell wall damage (i.e., hole formation) caused by exposure to Pd/rGO was restored, and the plasmolysis area was reduced by 28.6 %. In addition, growth inhibition, lipid peroxidation, loss of mitochondrial membrane potential and ROS formation induced by 1.0 mg/L MoS2NPs were decreased by 1.4-65.6 %, 13.9-26.1 %, 21.8-58.3 % and 9.6-16.1 %, respectively. These findings highlight the need to consider the effects of HA on the environmental transformation and biological toxicity of Pd/GFMs, which presents significant implications for the management of Pd/GFMs.
Collapse
Affiliation(s)
- Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yan Yan
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoqiang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Agro-product Safety, Key Laboratory for Environmental Factor Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Jingqi Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingqi Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
11
|
TMP/Pd Complex Immobilized on Graphene Oxide for Efficient Pseudocapacitive Energy Storage with Combined Experimental and DFT Study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Chinnaiah K, Kannan K, Sivaganesh D, Gurushankar K. Electrochemical performance and charge density distribution analysis of Ag/NiO nanocomposite synthesized from Withania somnifera leaf extract. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Facile synthesis of rGO@ CoO nanocomposites electrode material for photocatalytic hydrogen generation and supercapacitor applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Sun D, Ni X, Wang D, Gao F, Zhao L, Song H, Zhang M, Tian L, Ma X. The high-yield cutting conversion of porous graphene into graphene oxide quantum dots for boosting capacitive energy storage behavior. DIAMOND AND RELATED MATERIALS 2022; 125:108979. [DOI: 10.1016/j.diamond.2022.108979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
|
15
|
Zhang W, Guo X, Zhao J, Zheng Y, Xie H, Zhang Z, Wang S, Xu Q, Fu Q, Zhang T. High performance Flower-Like Mn3O4/rGO composite for supercapacitor applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Islam S, Mia MM, Shah SS, Naher S, Shaikh MN, Aziz MA, Ahammad AJS. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors. CHEM REC 2022; 22:e202200013. [PMID: 35313076 DOI: 10.1002/tcr.202200013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
The demand for energy storage devices with high energy and power densities has increased tremendously in this rapidly growing world. Conventional capacitors, fuel cells, and lithium-ion batteries have been used as energy storage devices for the long term. However, supercapacitors are one of the most promising energy storage devices because of their high specific capacitance, high power density, and longer cycle life. Recent research has focused on synthesizing transition-metal oxides/hydroxides, carbon materials, and conducting polymers as supercapacitor electrode materials. The performance of supercapacitors can be improved by altering electrolytes, electrode materials, current collectors, experimental temperatures, and film thickness. Thousands of papers on supercapacitors have already been published, reflecting the significance and elucidating how much demanding such energy storage devices for this fast-growing generation. This review aims to illustrate the electrode materials loaded on various conductive substrates by electrochemical deposition employed for supercapacitors to provide broad knowledge on synthetic pathways, which will pave the way for future research. We also discussed the basic parameters involved in supercapacitor studies and the advantages of the electrochemical deposition techniques through literature analysis. Finally, future trends and directions on exploring metals/metal composites toward designing and constructing viable, high-class, and even newly featured flexible energy storage materials, electrodes, and systems are presented.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Mithu Mia
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shamsun Naher
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
17
|
Iqbal K, Ishaq MA, Ahmad A, Ali MD, Zeeshan T, Tahir W, Aslam A, Amami M, Farhat IB, Ahmed SB, Abdelhak J. Fabrication and characterizations of hybrid materials based on polyaniline, metal oxide, and graphene nano-platelets for supercapacitor electrodes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Ali MD, Aslam A, Zeeshan T, Mubaraka R, Bukhari SA, Shoaib M, Amami M, Farhat IB, Ahmed SB, Abdelhak J, Waseem S. Robust effectiveness behavior of synthesized cobalt doped Prussian blue graphene oxide ferrite against EMI shielding. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Barra A, Nunes C, Ruiz-Hitzky E, Ferreira P. Green Carbon Nanostructures for Functional Composite Materials. Int J Mol Sci 2022; 23:ijms23031848. [PMID: 35163770 PMCID: PMC8836917 DOI: 10.3390/ijms23031848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Carbon nanostructures are widely used as fillers to tailor the mechanical, thermal, barrier, and electrical properties of polymeric matrices employed for a wide range of applications. Reduced graphene oxide (rGO), a carbon nanostructure from the graphene derivatives family, has been incorporated in composite materials due to its remarkable electrical conductivity, mechanical strength capacity, and low cost. Graphene oxide (GO) is typically synthesized by the improved Hummers’ method and then chemically reduced to obtain rGO. However, the chemical reduction commonly uses toxic reducing agents, such as hydrazine, being environmentally unfriendly and limiting the final application of composites. Therefore, green chemical reducing agents and synthesis methods of carbon nanostructures should be employed. This paper reviews the state of the art regarding the green chemical reduction of graphene oxide reported in the last 3 years. Moreover, alternative graphitic nanostructures, such as carbons derived from biomass and carbon nanostructures supported on clays, are pointed as eco-friendly and sustainable carbonaceous additives to engineering polymer properties in composites. Finally, the application of these carbon nanostructures in polymer composites is briefly overviewed.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Cláudia Nunes
- Department of Materials and Ceramic Engineering, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: (C.N.); (P.F.); Tel.: +351-234-370200 (P.F.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: (C.N.); (P.F.); Tel.: +351-234-370200 (P.F.)
| |
Collapse
|
20
|
One pot preparation of tin sulfide decorated graphene nanocomposite for high performance supercapacitor applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Karthikeyan S, Selvapandiyan M, Sankar A. Electrochemical Performance of Reduced Graphene Oxide (rGO) Decorated Lanthanum Oxide (La2O3) Composite Nanostructure as Asymmetric Supercapacitors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Hekmat F, Balim U, Unalan HE. Scalable, microwave-assisted decoration of commercial cotton fabrics with binary nickel cobalt sulfides towards textile-based energy storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Shang H, Ke L, Xu W, Shen M, Fan ZX, Zhang S, Wang Y, Tang D, Huang D, Yang HR, Zhou D, Xu H. Microwave-Assisted Direct Growth of Carbon Nanotubes at Graphene Oxide Nanosheets to Promote the Stereocomplexation and Performances of Polylactides. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Han Shang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Wenxuan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Mengyuan Shen
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China
| | - Zhen-Xing Fan
- Beijing Naton Institute of Medical Technology Co., Ltd., Beijing 100194, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yanqing Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Donghui Huang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Hao-Ran Yang
- State Laboratory of Surface and Interface Science and Technology, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Dongmei Zhou
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
24
|
Youssry SM, Abd Elkodous M, Kawamura G, Matsuda A. Carbon dots conjugated nanocomposite for the enhanced electrochemical performance of supercapacitor electrodes. RSC Adv 2021; 11:39636-39645. [PMID: 35494151 PMCID: PMC9044567 DOI: 10.1039/d1ra08045h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Naturally, a combination of metal oxides and carbon materials enhances the electrochemical performance of supercapacitor (SC) electrodes. We report on two different materials with highly conductive carbon dots (CDs) and a Co0.5Ni0.5Fe2O4/SiO2/TiO2 nanocomposite with a high power density, a high specific surface area, and a nanoporous structure to improve power and energy density in energy storage devices. A simple and low-cost process for synthesizing the hybrid SC electrode material Co0.5Ni0.5Fe2O4/SiO2/TiO2/CDs, known as CDs-nanocomposite, was performed via a layer-by-layer method; then, the CDs-nanocomposite was loaded on a nickel foam substrate for SC electrochemical measurements. A comparative study of the surface and morphology of CDs, the Co0.5Ni0.5Fe2O4/SiO2/TiO2 nanocomposite and CDs-nanocomposite was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), BET surface area, and Raman spectroscopy. The synthesized CDs-nanocomposite electrode material displayed enhanced electrochemical performance, having a high specific capacitance of 913.7 F g-1 at a scan rate of 5 mV s-1 and capacitance retention of 72.2%, as well as remarkable long-life cyclic stability over 3000 cycles in the three-electrode setup and 1 M KOH electrolyte. It also demonstrated a superior energy density of 130.7 W h kg-1. The improved electrochemical behavior of the CDs-nanocomposite for SC electrodes, together with its fast and simple synthesis method, provides a suitable point of reference. Other kinds of metal oxide nanocomposites can be synthesized for use in energy storage devices.
Collapse
Affiliation(s)
- Sally M Youssry
- Department of Chemistry, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| |
Collapse
|
25
|
Latha K, Anbuselvi S, Periasamy P, Sudha R, Velmurugan D. Microwave-Assisted hybridised WO3/V2O5 rod shape nanocomposites for electrochemical supercapacitor applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Liu Z, Diao Z, Yuan Y, Jia H, Wang L, Fei W. A two-step thermal treatment method to produce reduced graphene oxide with selectively increasing electrochemically active carbonyl group content for high-performance supercapacitor electrode. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Enhancement of photocatalytic by Mn3O4 spinel ferrite decorated graphene oxide nanocomposites. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
The hydrothermal process was used to prepare Mn3O4/x%GO nanocomposites (NC’s) having different ratios of the Mn3O4 nanoparticles (NP’s) on the surface of graphene oxide (GO) sheet. SEM image showed that the Mn3O4 NP’s were distributed over the surface of GO sheet. HRTEM images exhibited the lattice fringe arising from the (101) plane of the Mn3O4 NP’s having the interplanar d-spacing of 0.49 nm decorating on the surface of GO. The electronic absorption spectra of Mn3O4/x%GO NC’s also show broad bands from 250 to 550 nm. These bands arise from the d–d crystal field transitions of the tetrahedral Mn3+ species and indicate a distortion in the crystal structure. Photo-catalytic activity of spinel ferrite Mn3O4 NP’s by themselves was low but photo-catalytic activity is enhanced when the NP’s are decorating the GO sheet. Moreover, the Mn3O4/10%GO NC’s showed the best photo-catalytic activity. This result comes from the formation of Mn–O–C bond that confirm by FT-IR. This bond would facilitate the transfer of the photoelectrons from the surfaces of the NP’s to the GO sheets. PL emission which is in the violet–red luminescent region shows the creation of defects in the fabricated Mn3O4 NP’s nanostructures. These defects create the defect states to which electrons in the VB can be excited to when the CB. The best degradation efficiency was achieved by the Mn3O4 NP’s when they were used to decorate the GO sheets in the Mn3O4/10%GO NC’s solution.
Highlights
Lattice fringe of Mn3O4 with an interplanar d-spacing of 0.49 nm for (101) plane.
Photocatalytic activity of spinel ferrite Mn3O4 nanoparticles by itself is low.
Number of photoelectrons created depends on number of Mn3O4 on a given area of GO
The bonding of the Mn3O4 to the GO sheet would be though a Mn–O–C junction.
The degradation processes were accelerated by Mn3O4/10%GO nanocomposites
Graphic abstract
Collapse
|
28
|
Mathew G, Narayanan N, Abraham DA, De M, Neppolian B. Facile Green Approach for Developing Electrochemically Reduced Graphene Oxide-Embedded Platinum Nanoparticles for Ultrasensitive Detection of Nitric Oxide. ACS OMEGA 2021; 6:8068-8080. [PMID: 33817466 PMCID: PMC8014916 DOI: 10.1021/acsomega.0c05644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO) plays a crucial and important role in cellular physiology and also acts as a signaling molecule for cancer in humans. However, conventional detection methods have their own limitations in the detection of NO at low concentrations because of its high reactivity and low lifetime. Herein, we report a strategy to fabricate Pt nanoparticle-decorated electrochemically reduced graphene oxide (erGO)-modified glassy carbon electrode (GCE) with efficiency to detect NO at a low concentration. For this study, Pt@erGO/GCE was fabricated by employing two different sequential methods [first GO reduction followed by Pt electrodeposition (SQ-I) and Pt electrodeposition followed by GO reduction (SQ-II)]. It was interesting to note that the electrocatalytic current response for SQ-I (184 μA) was ∼15 and ∼3 folds higher than those of the bare GCE (11.7 μA) and SQ-II (61.5 μA). The higher current response was mainly attributed to a higher diffusion coefficient and electrochemically active surface area. The proposed SQ-I electrode exhibited a considerably low LOD of 52 nM (S/N = 3) in a linear range of 0.25-40 μM with a short response time (0.7 s). In addition, the practical analytical applicability of the proposed sensor was also verified.
Collapse
Affiliation(s)
- Georgeena Mathew
- SRM
Research Institute, SRM Institute of Science
and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Naresh Narayanan
- SRM
Research Institute, SRM Institute of Science
and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Daniel Arulraj Abraham
- National
Laboratory of Solid State Microstructures and Department of Materials
Science and Engineering, College of Engineering and Applied Sciences,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Mrinmoy De
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore, Karnataka 560012, India
| | - Bernaurdshaw Neppolian
- SRM
Research Institute, SRM Institute of Science
and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| |
Collapse
|
29
|
Borges PH, Catto AC, Longo E, Nossol E. Electrochemical synthesis of reduced graphene oxide/ruthenium oxide hexacyanoferrate nanocomposite film and its application for ranitidine detection. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Mousavi SM, Low FW, Hashemi SA, Lai CW, Ghasemi Y, Soroshnia S, Savardashtaki A, Babapoor A, Pynadathu Rumjit N, Goh SM, Amin N, Tiong SK. Development of graphene based nanocomposites towards medical and biological applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1189-1205. [DOI: 10.1080/21691401.2020.1817052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Foo Wah Low
- Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang, Malaysia
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Kuala Lumpur, Malaysia
| | - Younes Ghasemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadaf Soroshnia
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili (UMA), Ardabil, Iran
| | - Nelson Pynadathu Rumjit
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Kuala Lumpur, Malaysia
| | - Su Mei Goh
- College of Engineering, Universiti Tenaga Nasional (@The Energy University), Jalan IKRAM-UNITEN, Kajang, Malaysia
| | - Nowshad Amin
- Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang, Malaysia
| | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang, Malaysia
| |
Collapse
|
31
|
Vidhya MS, Ravi G, Yuvakkumar R, Velauthapillai D, Thambidurai M, Dang C, Saravanakumar B. Nickel-cobalt hydroxide: a positive electrode for supercapacitor applications. RSC Adv 2020; 10:19410-19418. [PMID: 35515465 PMCID: PMC9054063 DOI: 10.1039/d0ra01890b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022] Open
Abstract
So far, numerous metal oxides and metal hydroxides have been reported as an electrode material, a critical component in supercapacitors that determines the operation window of the capacitor. Among them, nickel and cobalt-based materials are studied extensively due to their high capacitance nature. However, the pure phase of hydroxides does not show a significant effect on cycle life. The observed XRD results revealed the phase structures of the obtained Ni(OH)2 and Co-Ni(OH)2 hydroxides. The congruency of the peak positions of Ni(OH)2 and Co-Ni(OH)2 is attributed to the homogeneity of the physical and chemical properties of the as-prepared products. The obtained results from XPS analysis indicated the presence of Co and the chemical states of the as-prepared composite active electrode materials. The SEM analysis revealed that the sample had the configuration of agglomerated particle nature. Moreover, the morphology and structure of the hydroxide materials impacted their charge storage properties. Thus, in this study, Ni(OH)2 and Co-Ni(OH)2 composite materials were produced via a hydrothermal method to obtain controllable morphology. The electrochemical properties were studied. It was observed that both the samples experienced a pseudocapacitive behavior, which was confirmed from the CV curves. For the electrode materials Ni(OH)2 and Co-Ni(OH)2, the specific capacitance (C s) of about 1038 F g-1 and 1366 F g-1, respectively, were observed at the current density of 1.5 A g-1. The Ni-Co(OH)2 composite showed high capacitance when compared with Ni(OH)2. The cycle index was determined for the electrode materials and it indicated excellent stability. The stability of the cell was investigated up to 2000 cycles, and the cell showed excellent retention of 96.26%.
Collapse
Affiliation(s)
- M Sangeetha Vidhya
- Nanomaterials Laboratory, Department of Physics, Alagappa University Karaikudi 630 003 Tamil Nadu India
| | - G Ravi
- Nanomaterials Laboratory, Department of Physics, Alagappa University Karaikudi 630 003 Tamil Nadu India
| | - R Yuvakkumar
- Nanomaterials Laboratory, Department of Physics, Alagappa University Karaikudi 630 003 Tamil Nadu India
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences Bergen - 5063 Norway
| | - M Thambidurai
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Cuong Dang
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - B Saravanakumar
- School for Advanced Research in Polymers (SARP), Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering & Technology (CIPET) Bhubaneswar - 751024 India
| |
Collapse
|
32
|
Wu H, He D, Wang Y. Electrode materials of Cobalt@Nitrogen doped carbon nano rod/reduced graphene oxide on Nickel foam by electrophoretic deposition and 3D rGO aerogel for a high-performance asymmetrical supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Youssry SM, El-Hallag I, Kumar R, Kawamura G, Matsuda A, El-Nahass MN. Synthesis of mesoporous Co(OH)2 nanostructure film via electrochemical deposition using lyotropic liquid crystal template as improved electrode materials for supercapacitors application. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113728] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Kong S, Jin B, Quan X, Zhang G, Guo X, Zhu Q, Yang F, Cheng K, Wang G, Cao D. MnO2 nanosheets decorated porous active carbon derived from wheat bran for high-performance asymmetric supercapacitor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113412] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|