1
|
Ge G, Li F, Yang M, Zhao Z, Hou G, Zhang C, Li X. In Situ Molecular Reconfiguration of Pyrene Redox-Active Molecules for High-Performance Aqueous Organic Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412197. [PMID: 39428902 DOI: 10.1002/adma.202412197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 10/22/2024]
Abstract
Aqueous organic flow batteries (AOFBs) hold great potential for large-scale energy storage, however, scalable, green, and economical synthetic methods for stable organic redox-active molecules (ORAMs) are still required for their practical applications. Herein, pyrene-based ORAMs are obtained via an in situ organic electrolysis strategy in a flow cell. It is revealed that the water attacking pyrenes restructured molecules to produce a variety of isomers and dimers during the electrolysis, which can be modulated by regulating the local electron cloud density and steric hindrance of pyrene precursors. As a result, the molecularly reconfigured pyrene-based catholytes, even without any further purification, achieved a high electrolyte utilization of ≈96% and volumetric capacity above 50 Ah L-1. Inspiringly, remarkable cell stability with almost no capacity decay for ≈70 days is achieved, benefiting from the robust aromatic structure of the pyrene cores. The insights into the in situ electrosynthesis of pyrene-based ORAMs provided in the work will provide guidance for designing ultra-stable ORAMs for AOFB applications.
Collapse
Affiliation(s)
- Guangxu Ge
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fan Li
- University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Min Yang
- University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Ziming Zhao
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Changkun Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
2
|
Molina-Serrano A, Luque-Centeno JM, Sebastián D, Arenas LF, Turek T, Vela I, Carrasco-Marín F, Lázaro MJ, Alegre C. Comparison of the Influence of Oxygen Groups Introduced by Graphene Oxide on the Activity of Carbon Felt in Vanadium and Anthraquinone Flow Batteries. ACS APPLIED ENERGY MATERIALS 2024; 7:2779-2790. [PMID: 38606034 PMCID: PMC11005476 DOI: 10.1021/acsaem.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 04/13/2024]
Abstract
An increasing number of studies focus on organic flow batteries (OFBs) as possible substitutes for the vanadium flow battery (VFB), featuring anthraquinone derivatives, such as anthraquinone-2,7-disulfonic acid (2,7-AQDS). VFBs have been postulated as a promising energy storage technology. However, the fluctuating cost of vanadium minerals and risky supply chains have hampered their implementation, while OFBs could be prepared from renewable raw materials. A critical component of flow batteries is the electrode material, which can determine the power density and energy efficiency. Yet, and in contrast to VFBs, studies on electrodes tailored for OFBs are scarce. Hence, in this work, we propose the modification of commercial carbon felts with reduced graphene oxide (rGO) and poly(ethylene glycol) for the 2,7-AQDS redox couple and to preliminarily assess its effects on the efficiency of a 2,7-AQDS/ferrocyanide flow battery. Results are compared to those of a VFB to evaluate if the benefits of the modification are transferable to OFBs. The modification of carbon felts with surface oxygen groups introduced by the presence of rGO enhanced both its hydrophilicity and surface area, favoring the catalytic activity toward VFB and OFB reactions. The results are promising, given the improved behavior of the modified electrodes. Parallels are established between the electrodes of both FB technologies.
Collapse
Affiliation(s)
- Antonio
J. Molina-Serrano
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - José M. Luque-Centeno
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - David Sebastián
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - Luis F. Arenas
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany
- Research
Center for Energy Storage Technologies, Clausthal University of Technology. Am Stollen 19 A, 38640 Goslar, Germany
| | - Thomas Turek
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany
- Research
Center for Energy Storage Technologies, Clausthal University of Technology. Am Stollen 19 A, 38640 Goslar, Germany
| | - Irene Vela
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | | | - María J. Lázaro
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - Cinthia Alegre
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| |
Collapse
|
3
|
Yang G, Zhu Y, Hao Z, Lu Y, Zhao Q, Zhang K, Chen J. Organic Electroactive Materials for Aqueous Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301898. [PMID: 37158492 DOI: 10.1002/adma.202301898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Organic electroactive materials take advantage of potentially sustainable production and structural tunability compared to present commercial inorganic materials. Unfortunately, traditional redox flow batteries based on toxic redox-active metal ions have certain deficiencies in resource utilization and environmental protection. In comparison, organic electroactive materials in aqueous redox flow batteries (ARFBs) have received extensive attention in recent years for low-cost and sustainable energy storage systems due to their inherent safety. This review aims to provide the recent progress in organic electroactive materials for ARFBs. The main reaction types of organic electroactive materials are classified in ARFBs to provide an overview of how to regulate their solubility, potential, stability, and viscosity. Then, the organic anolyte and catholyte in ARFBs are summarized according to the types of quinones, viologens, nitroxide radicals, hydroquinones, etc, and how to increase the solubility by designing various functional groups is emphasized. The research advances are presented next in the characterization of organic electroactive materials for ARFBs. Future efforts are finally suggested to focus on building neutral ARFBs, designing advanced electroactive materials through molecular engineering, and resolving problems of commercial applications.
Collapse
Affiliation(s)
- Gaojing Yang
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yaxun Zhu
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhimeng Hao
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Lu
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qing Zhao
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kai Zhang
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
Petrov M, Chikin D, Abunaeva L, Glazkov A, Pichugov R, Vinyukov A, Levina I, Motyakin M, Mezhuev Y, Konev D, Antipov A. Mixture of Anthraquinone Sulfo-Derivatives as an Inexpensive Organic Flow Battery Negolyte: Optimization of Battery Cell. MEMBRANES 2022; 12:912. [PMID: 36295671 PMCID: PMC9607404 DOI: 10.3390/membranes12100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Anthraquinone-2,7-disulfonic acid (2,7-AQDS) is a promising organic compound, which is considered as a negolyte for redox flow batteries as well as for other applications. In this work we carried out a well-known reaction of anthraquinone sulfonation to synthesize 2,7-AQDS in mixture with other sulfo-derivatives, namely 2,6-AQDS and 2-AQS. Redox behavior of this mixture was evaluated with cyclic voltammetry and was almost identical to 2,7-AQDS. Mixture was then assessed as a potential negolyte of anthraquinone-bromine redox flow battery. After adjusting membrane-electrode assembly composition (membrane material and flow field)), the cell demonstrated peak power density of 335 mW cm-2 (at SOC 90%) and capacity utilization, capacity retention and energy efficiency of 87.9, 99.6 and 64.2%, respectively. These values are almost identical or even higher than similar values for flow battery with 2,7-AQDS as a negolyte, while the price of mixture is significantly lower. Therefore, this work unveils the promising possibility of using a mixture of crude sulfonated anthraquinone derivatives mixture as an inexpensive negolyte of RFB.
Collapse
Affiliation(s)
- Mikhail Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry Chikin
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Lilia Abunaeva
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Artem Glazkov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Roman Pichugov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Vinyukov
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Irina Levina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail Motyakin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry Konev
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Anatoly Antipov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
5
|
Electrochemical analysis of charge mediator product composition through transient model and experimental validation. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Nolte O, Geitner R, Volodin IA, Rohland P, Hager MD, Schubert US. State of Charge and State of Health Assessment of Viologens in Aqueous-Organic Redox-Flow Electrolytes Using In Situ IR Spectroscopy and Multivariate Curve Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200535. [PMID: 35481674 PMCID: PMC9189600 DOI: 10.1002/advs.202200535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Aqueous-organic redox flow batteries (RFBs) have gained considerable interest in recent years, given their potential for an economically viable energy storage at large scale. This, however, strongly depends on both the robustness of the underlying electrolyte chemistry against molecular decomposition reactions as well as the device's operation. With regard to this, the presented study focuses on the use of in situ IR spectroscopy in combination with a multivariate curve resolution approach to gain insight into both the molecular structures of the active materials present within the electrolyte as well as crucial electrolyte state parameters, represented by the electrolyte's state of charge (SOC) and state of health (SOH). To demonstrate the general applicability of the approach, methyl viologen (MV) and bis(3-trimethylammonium)propyl viologen (BTMAPV) are chosen, as viologens are frequently used as negolytes in aqueous-organic RFBs. The study's findings highlight the impact of in situ spectroscopy and spectral deconvolution tools on the precision of the obtainable SOC and SOH values. Furthermore, the study indicates the occurrence of multiple viologen dimers, which possibly influence the electrolyte lifetime and charging characteristics.
Collapse
Affiliation(s)
- Oliver Nolte
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Robert Geitner
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
- Institute of Chemistry and BioengineeringTechnical University IlmenauWeimarer Str. 3298693IlmenauGermany
| | - Ivan A. Volodin
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Philip Rohland
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
7
|
Zhang D, Liang W, Yi J, Chen J, Lv Y, Zhao T, Xiao C, Xie X, Wu W, Yang C. Photochemical graft of γ-cyclodextrin’s interior leading to in-situ charge-transfer complexes with unusual regioselectivity and its application in 3D photo-printing. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Naphthalene diimides (NDI) in highly stable pH-neutral aqueous organic redox flow batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Guo B, Miura Y, Hoshino Y. Rational Design of Thermocells Driven by the Volume Phase Transition of Hydrogel Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32184-32192. [PMID: 34197066 DOI: 10.1021/acsami.1c07266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermocells are thermoelectrochemical conversion systems for harvesting low-temperature thermal energy. Liquid-state thermocells are particularly desirable because of low cost and their high conversion efficiency at temperatures around physiological temperature, and they have, thus, been extensively studied. However, the performance of the thermocells has to be improved to utilize them as energy chargers and/or batteries. Recently, we reported that a liquid-state thermocell driven by the volume phase transition of hydrogel nanoparticles showed highly efficient thermoelectric conversion with Seebeck coefficient (Se) of -6.7 mV K-1. Here, we report the design rationale of the thermocells driven by the phase transition. A high Se of -9.5 mV K-1 was achieved at temperature between 36 and 40 °C by optimizing choice and amount of redox chemical species. The figure of merit (ZT) of the thermocell was improved by selecting appropriate electrolyte salt to increase the ionic conductivity and prevent the precipitation of nanoparticles. Furthermore, screening of nanoparticles revealed the high correlation between Se and the pH shift generated as a result of phase transition of the nanoparticles. After optimization, the maximum ZT of 8.0 × 10-2 was achieved at a temperature between 20 and 70 °C.
Collapse
Affiliation(s)
- Benshuai Guo
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Nolte O, Volodin IA, Stolze C, Hager MD, Schubert US. Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes. MATERIALS HORIZONS 2021; 8:1866-1925. [PMID: 34846470 DOI: 10.1039/d0mh01632b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flow batteries (FBs) currently are one of the most promising large-scale energy storage technologies for energy grids with a large share of renewable electricity generation. Among the main technological challenges for the economic operation of a large-scale battery technology is its calendar lifetime, which ideally has to cover a few decades without significant loss of performance. This requirement can only be met if the key parameters representing the performance losses of the system are continuously monitored and optimized during the operation. Nearly all performance parameters of a FB are related to the two electrolytes as the electrochemical storage media and we therefore focus on them in this review. We first survey the literature on the available characterization methods for the key FB electrolyte parameters. Based on these, we comprehensively review the currently available approaches for assessing the most important electrolyte state variables: the state-of-charge (SOC) and the state-of-health (SOH). We furthermore discuss how monitoring and operation strategies are commonly implemented as online tools to optimize the electrolyte performance and recover lost battery capacity as well as how their automation is realized via battery management systems (BMSs). Our key findings on the current state of this research field are finally highlighted and the potential for further progress is identified.
Collapse
Affiliation(s)
- Oliver Nolte
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
11
|
Novel, Stable Catholyte for Aqueous Organic Redox Flow Batteries: Symmetric Cell Study of Hydroquinones with High Accessible Capacity. Molecules 2021; 26:molecules26133823. [PMID: 34201612 PMCID: PMC8270313 DOI: 10.3390/molecules26133823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022] Open
Abstract
Owing to their broad range of redox potential, quinones/hydroquinones can be utilized for energy storage in redox flow batteries. In terms of stability, organic catholytes are more challenging than anolytes. The two-electron transfer feature adds value when building all-quinone flow battery systems. However, the dimerization of quinones/hydroquinones usually makes it difficult to achieve a full two-electron transfer in practical redox flow battery applications. In this work, we designed and synthesized four new hydroquinone derivatives bearing morpholinomethylene and/or methyl groups in different positions on the benzene ring to probe molecular stability upon battery cycling. The redox potential of the four molecules were investigated, followed by long-term stability tests using different supporting electrolytes and cell cycling methods in a symmetric flow cell. The derivative with two unoccupied ortho positions was found highly unstable, the cell of which exhibited a capacity decay rate of ~50% per day. Fully substituted hydroquinones turned out to be more stable. In particular, 2,6-dimethyl-3,5-bis(morpholinomethylene)benzene-1,4-diol (asym-O-5) displayed a capacity decay of only 0.45%/day with four-week potentiostatic cycling at 0.1 M in 1 M H3PO4. In addition, the three fully substituted hydroquinones displayed good accessible capacity of over 82%, much higher than those of conventional quinone derivatives.
Collapse
|
12
|
Mazúr P, Charvát J, Mrlík J, Pocedič J, Akrman J, Kubáč L, Řeháková B, Kosek J. Evaluation of Electrochemical Stability of Sulfonated Anthraquinone-Based Acidic Electrolyte for Redox Flow Battery Application. Molecules 2021; 26:molecules26092484. [PMID: 33923204 PMCID: PMC8123158 DOI: 10.3390/molecules26092484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Despite intense research in the field of aqueous organic redox flow batteries, low molecular stability of electroactive compounds limits further commercialization. Additionally, currently used methods typically cannot differentiate between individual capacity fade mechanisms, such as degradation of electroactive compound and its cross-over through the membrane. We present a more complex method for in situ evaluation of (electro)chemical stability of electrolytes using a flow electrolyser and a double half-cell including permeation measurements of electrolyte cross-over through a membrane by a UV–VIS spectrometer. The method is employed to study (electro)chemical stability of acidic negolyte based on an anthraquinone sulfonation mixture containing mainly 2,6- and 2,7-anthraquinone disulfonic acid isomers, which can be directly used as an RFB negolyte. The effect of electrolyte state of charge (SoC), current load and operating temperature on electrolyte stability is tested. The results show enhanced capacity decay for fully charged electrolyte (0.9 and 2.45% per day at 20 °C and 40 °C, respectively) while very good stability is observed at 50% SoC and lower, even at 40 °C and under current load (0.02% per day). HPLC analysis conformed deep degradation of AQ derivatives connected with the loss of aromaticity. The developed method can be adopted for stability evaluation of electrolytes of various organic and inorganic RFB chemistries.
Collapse
Affiliation(s)
- Petr Mazúr
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 5, Praha 6, 166 28 Prague, Czech Republic; (J.C.); (J.M.); (J.K.)
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic;
- Correspondence:
| | - Jiří Charvát
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 5, Praha 6, 166 28 Prague, Czech Republic; (J.C.); (J.M.); (J.K.)
| | - Jindřich Mrlík
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 5, Praha 6, 166 28 Prague, Czech Republic; (J.C.); (J.M.); (J.K.)
| | - Jaromír Pocedič
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic;
| | - Jiří Akrman
- Centre for Organic Chemistry, Rybitvi 296, 533 54 Rybitvi, Czech Republic; (J.A.); (L.K.)
| | - Lubomír Kubáč
- Centre for Organic Chemistry, Rybitvi 296, 533 54 Rybitvi, Czech Republic; (J.A.); (L.K.)
| | | | - Juraj Kosek
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 5, Praha 6, 166 28 Prague, Czech Republic; (J.C.); (J.M.); (J.K.)
- New Technologies—Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic;
| |
Collapse
|
13
|
Electrochemical Characterization of Aromatic Molecules with 1,4-Diaza Groups for Flow Battery Applications. Molecules 2021; 26:molecules26082227. [PMID: 33921498 PMCID: PMC8069459 DOI: 10.3390/molecules26082227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
The aqueous redox flow battery is a promising technology for large-scale low cost energy storage. The rich possibilities for the tailoring of organic molecules and the possibility to discover active materials of lower cost and decreased environmental impact continue to drive research and development of organic compounds suitable for redox flow battery applications. In this work, we focus on the characterization of aromatic molecules with 1,4-diaza groups for flow battery applications. We examine the influence of electron-withdrawing and electron-donating substituents and the effect of the relative position of the substituent(s) on the molecule. We found that electron-withdrawing substituents increased the potential, while electron-donating decreased it, in agreement with expectations. The number of carboxy-groups on the pyrazinic ring was found to have a strong impact on the heterogeneous electron transfer kinetics, with the slowest kinetics observed for pyrazine-2,3,5,6-tetracarboxylic acid. The stability of quinoxaline was investigated by cyclic voltammetry and in a flow cell configuration. Substitution at the 2,3-positions in quinoxaline was found to decrease the capacity fade rate significantly. Furthermore, we demonstrated how molecular aggregation reduces the effective number of electrons involved in the redox process for quinoxalines. This translates to a significant reduction of the achievable volumetric capacity at higher concentrations, yielding values significantly lower than the theoretical capacity. Finally, we demonstrate that such capacity-limiting molecular aggregation may be reduced by introducing flexible side chains with bulky charged groups in order to increase electrostatic repulsion and steric hindrance.
Collapse
|
14
|
Zhao EW, Jónsson E, Jethwa RB, Hey D, Lyu D, Brookfield A, Klusener PAA, Collison D, Grey CP. Coupled In Situ NMR and EPR Studies Reveal the Electron Transfer Rate and Electrolyte Decomposition in Redox Flow Batteries. J Am Chem Soc 2021; 143:1885-1895. [PMID: 33475344 PMCID: PMC7877726 DOI: 10.1021/jacs.0c10650] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
We
report the development of in situ (online) EPR and coupled EPR/NMR methods to study redox flow
batteries, which are applied here to investigate the redox-active
electrolyte, 2,6-dihydroxyanthraquinone (DHAQ). The radical
anion, DHAQ3–•, formed as a reaction intermediate
during the reduction of DHAQ2–, was detected and
its concentration quantified during electrochemical cycling. The fraction
of the radical anions was found to be concentration-dependent, the
fraction decreasing as the total concentration of DHAQ increases,
which we interpret in terms of a competing dimer formation mechanism.
Coupling the two techniques—EPR and NMR—enables the
rate constant for the electron transfer between DHAQ3–• and DHAQ4– anions to be determined. We quantify
the concentration changes of DHAQ during the “high-voltage”
hold by NMR spectroscopy and correlate it quantitatively to the capacity
fade of the battery. The decomposition products, 2,6-dihydroxyanthrone
and 2,6-dihydroxyanthranol, were identified during this hold;
they were shown to undergo subsequent irreversible electrochemical
oxidation reaction at 0.7 V, so that they no longer participate in
the subsequent electrochemistry of the battery when operated in the
standard voltage window of the cell. The decomposition reaction rate
was found to be concentration-dependent, with a faster rate being
observed at higher concentrations. Taking advantage of the inherent
flow properties of the system, this work demonstrates the possibility
of multi-modal in situ (online)
characterizations of redox flow batteries, the characterization techniques
being applicable to a range of electrochemical flow systems.
Collapse
Affiliation(s)
- Evan Wenbo Zhao
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Erlendur Jónsson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Rajesh B Jethwa
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Dominic Hey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Dongxun Lyu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Adam Brookfield
- Department of Chemistry & Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Peter A A Klusener
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam, Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - David Collison
- Department of Chemistry & Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
15
|
Rohland P, Schreyer K, Hager MD, Schubert US. Anthraquinone-2,6-disulfamidic acid: an anolyte with low decomposition rates at elevated temperatures. RSC Adv 2021; 11:38759-38764. [PMID: 35493233 PMCID: PMC9044267 DOI: 10.1039/d1ra05545c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
A new anthraquinone based anolyte material for redox flow batteries revealed an extraordinarily high stability at elevated electrolyte temperatures.
Collapse
Affiliation(s)
- Philip Rohland
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Kristin Schreyer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
16
|
The electrochemical response of core-functionalized naphthalene Diimides (NDI) – a combined computational and experimental investigation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Zhou M, Chen Y, Salla M, Zhang H, Wang X, Mothe SR, Wang Q. Single‐Molecule Redox‐Targeting Reactions for a pH‐Neutral Aqueous Organic Redox Flow Battery. Angew Chem Int Ed Engl 2020; 59:14286-14291. [DOI: 10.1002/anie.202004603] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/26/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Mingyue Zhou
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Yan Chen
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Manohar Salla
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Hang Zhang
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Xun Wang
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Srinivasa Reddy Mothe
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Qing Wang
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| |
Collapse
|
18
|
Zhou M, Chen Y, Salla M, Zhang H, Wang X, Mothe SR, Wang Q. Single‐Molecule Redox‐Targeting Reactions for a pH‐Neutral Aqueous Organic Redox Flow Battery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mingyue Zhou
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Yan Chen
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Manohar Salla
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Hang Zhang
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Xun Wang
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Srinivasa Reddy Mothe
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| | - Qing Wang
- Department of Materials Science and Engineering National University of Singapore 117576 Singapore Singapore
| |
Collapse
|
19
|
Kwabi DG, Ji Y, Aziz MJ. Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. Chem Rev 2020; 120:6467-6489. [PMID: 32053366 DOI: 10.1021/acs.chemrev.9b00599] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aqueous organic redox flow batteries (RFBs) could enable widespread integration of renewable energy, but only if costs are sufficiently low. Because the levelized cost of storage for an RFB is a function of electrolyte lifetime, understanding and improving the chemical stability of active reactants in RFBs is a critical research challenge. We review known or hypothesized molecular decomposition mechanisms for all five classes of aqueous redox-active organics and organometallics for which cycling lifetime results have been reported: quinones, viologens, aza-aromatics, iron coordination complexes, and nitroxide radicals. We collect, analyze, and compare capacity fade rates from all aqueous organic electrolytes that have been utilized in the capacity-limiting side of flow or hybrid flow/nonflow cells, noting also their redox potentials and demonstrated concentrations of transferrable electrons. We categorize capacity fade rates as being "high" (>1%/day), "moderate" (0.1-1%/day), "low" (0.02-0.1%/day), and "extremely low" (≤0.02%/day) and discuss the degree to which the fade rates have been linked to decomposition mechanisms. Capacity fade is observed to be time-denominated rather than cycle-denominated, with a temporal rate that can depend on molecular concentrations and electrolyte state of charge through, e.g., bimolecular decomposition mechanisms. We then review measurement methods for capacity fade rate and find that simple galvanostatic charge-discharge cycling is inadequate for assessing capacity fade when fade rates are low or extremely low and recommend refining methods to include potential holds for accurately assessing molecular lifetimes under such circumstances. We consider separately symmetric cell cycling results, the interpretation of which is simplified by the absence of a different counter-electrolyte. We point out the chemistries with low or extremely low established fade rates that also exhibit open circuit potentials of 1.0 V or higher and transferrable electron concentrations of 1.0 M or higher, which are promising performance characteristics for RFB commercialization. We point out important directions for future research.
Collapse
Affiliation(s)
- David G Kwabi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yunlong Ji
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael J Aziz
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| |
Collapse
|