1
|
Meher AK, Abbas A. PTR-MS analysis of fungal VOCs for early detection of oak wilt. Anal Bioanal Chem 2025:10.1007/s00216-025-05880-6. [PMID: 40272508 DOI: 10.1007/s00216-025-05880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Traditional methods for diagnosing bacterial or fungal infections, such as cell culture, are comprehensive but time-consuming and subjective. Microbial volatile organic compound (VOC) analysis offers a faster alternative, though challenges such as low concentrations and chemical heterogeneity persist. Gas chromatography-mass spectrometry (GC-MS), while highly sensitive, requires lengthy sample preparation. This study presents a novel approach using proton transfer-reaction mass spectrometry (PTR-MS) for direct headspace analysis of fungal cultures, eliminating the need for preconcentration steps. By culturing microbes in wide-mouth glass jars with septum caps, VOC profiles were obtained in under 30 s for samples which were incubated for just 1 day, thus significantly reducing the diagnosis time. Using Bretziella fagacearum, a model organism known for its distinctive fruity odor linked to oak wilt disease, this method demonstrated enhanced accuracy and speed in detecting characteristic VOCs. The high sensitivity and rapid turnaround of this technique offer a promising alternative to traditional cell culture and GC-MS methods, providing faster, more reliable diagnostics and reducing both the complexity and time required for pathogen identification.
Collapse
Affiliation(s)
- Anil Kumar Meher
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
2
|
Wu H, Li A, Wang J, Li X, Cui M, Yang N, Liu Y, Zhang L, Wang X, Zhan G. A novel electrochemical sensor based on autotropic and heterotrophic nitrifying biofilm for trichloroacetic acid toxicity monitoring. ENVIRONMENTAL RESEARCH 2022; 210:112985. [PMID: 35192804 DOI: 10.1016/j.envres.2022.112985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Trichloroacetic acid (TCA), a toxic substance produced in the disinfection process of wastewater treatment plants, will accumulate in the receiving water. The detection of TCA in the water can achieve the purpose of early warning. However, currently there are few reports on microbial sensors used for TCA detection, and the characteristics of their microbial communities are still unclear. In this work, a toxicity monitoring microbial system (TMMS) with nitrifying biofilm as a sensing element and cathode oxygen reduction as a current signal was successfully constructed for TCA detection. The current and nitrification rate showed a linear relationship with low TCA concentration from 0 to 50 μg/L (R2current = 0.9892, R2nitrification = 0.9860), and high concentration range from 50 to 5000 μg/L (R2current = 0.9883, R2nitrification = 0.9721). High-throughput sequencing revealed that the TMMS was composed of autotrophic/heterotrophic nitrifying and denitrifying microorganisms. Further analysis via symbiotic relationship network demonstrated that Arenimonas and Hyphomicrobium were the core nodes for maintaining interaction between autotropic and heterotrophic nitrifying bacteria. Kyoto Encyclopedia of Genes and Genomes analysis showed that after adding TCA to TMMS, the carbon metabolism and the abundance of the tricarboxylic acid cycle pathway were reduced, and the activity of microorganisms was inhibited. TCA stress caused a low abundance of nitrifying and denitrifying functional enzymes, resulting in low oxygen consumption in the nitrification process, but more oxygen supply for cathode oxygen reduction. This work explored a novel sensor combined with electrochemistry and autotrophic/heterotrophic nitrification, which provided a new insight into the development of microbial monitoring of toxic substances.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaoyun Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Nuan Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
3
|
Wu H, Cui M, Yang X, Liu Y, Wang J, Zhang L, Zhan G, Zhao Y. Visual signal sensor coupling to nitrification for sustainable monitoring of trichloroacetaldehyde and the response mechanisms. Bioelectrochemistry 2022; 146:108142. [DOI: 10.1016/j.bioelechem.2022.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
|
4
|
Noori MT, Thatikayala D, Pant D, Min B. A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology. BIORESOURCE TECHNOLOGY 2022; 347:126589. [PMID: 34929327 DOI: 10.1016/j.biortech.2021.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Implicit interaction of electroactive microbes with solid electrodes is an interesting phenomenon in nature, which supported development of bioelectrochemical systems (BESs), especially the microbial fuel cell (MFCs) for valorization of low-value waste streams into bioelectricity. Intriguingly, the metabolism of interacted microbes with electrode is affected by the microenvironment at electrodes, which influences the current response. For instance, when heavy metal ions (HMIs) are imposed in the medium, the current production decreases due to their intrinsic toxic effect. This event provides an immense opportunity to utilize MFC as a sensor to selectively detect HMIs in the environment, which has been explored vastly in recent decade. In this review, we have concisely discussed the microbial interaction with electrodes and mechanism of detection of HMIs using an MFC. Recent advancement in sensing elements and their application is elaborated with a future perspective section for follow-up research and development in this field.
Collapse
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea
| | - Dayakar Thatikayala
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
5
|
Olaifa K, Ajunwa O, Marsili E. Electroanalytic evaluation of antagonistic effect of azole fungicides on Acinetobacter baumannii biofilms. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Aiyer K, Doyle LE. Capturing the signal of weak electricigens: a worthy endeavour. Trends Biotechnol 2021; 40:564-575. [PMID: 34696916 DOI: 10.1016/j.tibtech.2021.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022]
Abstract
Recently several non-traditional electroactive microorganisms have been discovered. These can be considered weak electricigens; microorganisms that typically rely on soluble electron acceptors and donors in their lifecycle but are also capable of extracellular electron transfer (EET), resulting in either a low, unreliable, or otherwise unexpected current. These unanticipated electroactive microorganisms represent a new chapter in electromicrobiology and have important medical, environmental, and biotechnological relevance. As such, it is essential to continue the momentum of their discovery. However, their study poses unique challenges due to their low current output. Capturing their signal necessitates novel approaches including unconventional electrode choice, the use of sensitive electrochemical techniques, and modifications of conventional experiments that use bioelectrochemical systems (BES).
Collapse
Affiliation(s)
- Kartik Aiyer
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, G5WV+9H9, Hauz Khas, New Delhi, Delhi 110016, India
| | - Lucinda E Doyle
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, G5WV+9H9, Hauz Khas, New Delhi, Delhi 110016, India.
| |
Collapse
|
7
|
Olaifa K, Nikodinovic-Runic J, Glišić B, Boschetto F, Marin E, Segreto F, Marsili E. Electroanalysis of Candida albicans biofilms: A suitable real-time tool for antifungal testing. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Savić ND, Petković BB, Vojnovic S, Mojicevic M, Wadepohl H, Olaifa K, Marsili E, Nikodinovic-Runic J, Djuran MI, Glišić BĐ. Dinuclear silver(i) complexes with a pyridine-based macrocyclic type of ligand as antimicrobial agents against clinically relevant species: the influence of the counteranion on the structure diversification of the complexes. Dalton Trans 2021; 49:10880-10894. [PMID: 32716429 DOI: 10.1039/d0dt01272f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New dinuclear silver(i) complexes with N,N',N'',N'''-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc), [Ag2(NO3)(tpmc)]NO3·1.7H2O (1), [Ag2(CF3SO3)2(tpmc)] (2), and [Ag2(tpmc)](BF4)2 (3) were synthesized and characterized by NMR (1H and 13C), IR and UV-Vis spectroscopy, cyclic voltammetry and molar conductivity measurements. The molecular structures of the complexes were determined by single-crystal X-ray diffraction analysis. The spectroscopic and crystallographic data showed that the structure of the complexes strongly depends on the nature of the counteranion of silver(i) salt used for their synthesis. The antimicrobial activity of complexes 1-3 was examined against Gram-positive and Gram-negative bacteria and different species of unicellular fungus Candida spp. The ability of these complexes to inhibit the formation of Candida biofilms and to eradicate the already formed biofilms was tested in the standard microtiter plate-based assay. In addition, a bioelectrochemical testing of the antimicrobial activity of complex 1 against early biofilm was also performed. The obtained results indicated that complexes 1-3 showed increased activity toward Gram-negative bacteria and Candida spp. and could inhibit the formation of biofilms. In most cases, these complexes had positive selectivity indices and showed similar or even better activity with respect to the clinically used silver(i) sulfadiazine (AgSD). The values of the binding constants for complexes 1-3 to bovine serum albumin (BSA) were found to be high enough to indicate their binding to this biomolecule, but not so high as to prevent their release upon arrival at the target site. Moreover, the positive values of partition coefficients for these complexes indicated their ability to be transported through the cell membrane. Once inside the cell, complexes 1-3 could induce the formation of the reactive oxygen species (ROS) in C. albicans cells and/or interact with DNA. Taken together, silver(i) complexes with the tpmc ligand could be considered as novel antimicrobial compounds with favourable pharmacological properties, being safer than AgSD.
Collapse
Affiliation(s)
- Nada D Savić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
| | - Branka B Petković
- University of Priština-Kosovska Mitrovica, Faculty of Sciences, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marija Mojicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kayode Olaifa
- Department of Chemical and Materials Engineering, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan
| | - Enrico Marsili
- Department of Chemical and Materials Engineering, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
9
|
Olias LG, Di Lorenzo M. Microbial fuel cells for in-field water quality monitoring. RSC Adv 2021; 11:16307-16317. [PMID: 35479166 PMCID: PMC9031575 DOI: 10.1039/d1ra01138c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The need for water security pushes for the development of sensing technologies that allow online and real-time assessments and are capable of autonomous and stable long-term operation in the field. In this context, Microbial Fuel Cell (MFC) based biosensors have shown great potential due to cost-effectiveness, simplicity of operation, robustness and the possibility of self-powered applications. This review focuses on the progress of the technology in real scenarios and in-field applications and discusses the technological bottlenecks that must be overcome for its success. An overview of the most relevant findings and challenges of MFC sensors for practical implementation is provided. First, performance indicators for in-field applications, which may diverge from lab-based only studies, are defined. Progress on MFC designs for off-grid monitoring of water quality is then presented with a focus on solutions that enhance robustness and long-term stability. Finally, calibration methods and detection algorithms for applications in real scenarios are discussed.
Collapse
Affiliation(s)
- Lola Gonzalez Olias
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Chemical Engineering, University of Bath Bath BA2 7AY UK
- Water Innovation Research Centre (WIRC), University of Bath Bath BA2 7AY UK
| | - Mirella Di Lorenzo
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Chemical Engineering, University of Bath Bath BA2 7AY UK
| |
Collapse
|
10
|
Sui B, Xu Y, Wang Z, Zhang C, Qin L, Li X, Wu S. Simultaneously performing optical and electrical responses from a plasmonic sensor based on gold/silicon Schottky junction. OPTICS EXPRESS 2019; 27:38382-38390. [PMID: 31878606 DOI: 10.1364/oe.27.038382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Making the chemical or biological sensors simpler and more compatible with other measurements is a key enabling technology for commercial application. In this work, we propose a plasmonic refractive-index sensor only based on gold/silicon Schottky junction to simultaneously perform optical and electrical read-out responses. Via exciting surface plasmon resonance (SPR), the designed device shows a few characteristic reflection valleys and greatly enhances the narrowband light absorption. Calculated results indicate that the SPR resonance wavelength can be tuned in the wavelength range of 1100-2000 nm by manipulating the period, width of the Si nanochannel and the incident angle of light. When the analyte is changed, the SPR resonance wavelength generated at the bottom surface of the Au layer barely shifts, while the one at the top surface shows a significant linear shift. The optimally designed system shows an optical response with a refractive index sensitivity of over 1000 nm per refractive index unit (nm/RIU). Moreover, the electrodynamic calculation of the hot electrons predicts the electrical response can be up to 14.5 mA/(W·RIU) for an example of detecting trichloromethane, where the employed light can be a monochromatic light and the sensing operation can be much simpler relative to the conventional spectral work mode.
Collapse
|
11
|
Astorga SE, Hu LX, Marsili E, Huang Y. Electrochemical Signature of
Escherichia coli
on Nickel Micropillar Array Electrode for Early Biofilm Characterization. ChemElectroChem 2019. [DOI: 10.1002/celc.201901063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Solange E. Astorga
- School of Material Science and Engineering Nanyang Technological University 639977 Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University 637551 Singapore
| | - Liang Xing Hu
- School of Mechanical and Aerospace Engineering Nanyang Technological University 639798 Singapore
| | - Enrico Marsili
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University 637551 Singapore
- Department of Chemical and Materials Engineering Nazarbayev University 010000 Nur-Sultan Kazakhstan
- Environment & Resource Efficiency Cluster (EREC) Nazarbayev University 010000 Nur-Sultan Kazakhstan
| | - Yizhong Huang
- School of Material Science and Engineering Nanyang Technological University 639977 Singapore
| |
Collapse
|