1
|
Paul TK, Khaleque MA, Ali MR, Aly Saad Aly M, Bacchu MS, Rahman S, Khan MZH. MXenes from MAX phases: synthesis, hybridization, and advances in supercapacitor applications. RSC Adv 2025; 15:8948-8976. [PMID: 40129646 PMCID: PMC11931508 DOI: 10.1039/d5ra00271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
MXenes, which are essentially 2D layered structures composed of transition metal carbides and nitrides obtained from MAX phases, have gained substantial interest in the field of energy storage, especially for their potential as electrodes in supercapacitors due to their unique properties such as high electrical conductivity, large surface area, and tunable surface chemistry that enable efficient charge storage. However, their practical implementation is hindered by challenges like self-restacking, oxidation, and restricted ion transport within the layered structure. This review focuses on the synthesis process of MXenes from MAX phases, highlighting the different etching techniques employed and how they significantly influence the resulting MXene structure and subsequent electrochemical performance. It further highlights the hybridization of MXenes with carbon-based materials, conducting polymers, and metal oxides to enhance charge storage capacity, cyclic stability, and ion diffusion. The influence of dimensional structuring (1D, 2D, and 3D architectures) on electrochemical performance is critically analyzed, showcasing their role in optimizing electrolyte accessibility and energy density. Additionally, the review highlights that while MXene-based supercapacitors have seen significant advancements in terms of energy storage efficiency through various material combinations and fabrication techniques, key challenges like large-scale production, long-term stability, and compatibility with electrolytes still need to be addressed. Future research should prioritize developing scalable synthesis methods, optimizing hybrid material interactions, and investigating new electrolyte systems to fully realize the potential of MXene-based supercapacitors for commercial applications. This comprehensive review provides a roadmap for researchers aiming to bridge the gap between laboratory research and commercial supercapacitor applications.
Collapse
Affiliation(s)
- Tamal K Paul
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Md Abdul Khaleque
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Md Romzan Ali
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Mohamed Aly Saad Aly
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta GA 30332 USA
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI) Shenzhen Guangdong 518052 China
| | - Md Sadek Bacchu
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Saidur Rahman
- Research Centre for Nano-Materials and Energy Technology, School of Engineering and Technology, Sunway University Bandar Sunway Malaysia
- Department of Engineering, Lancaster University Lancaster UK
| | - Md Zaved H Khan
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| |
Collapse
|
2
|
Rahman Khan MM, Rumon MMH. Recent Progress on the Synthesis, Morphological Topography, and Battery Applications of Polypyrrole-Based Nanocomposites. Polymers (Basel) 2024; 16:3277. [PMID: 39684021 DOI: 10.3390/polym16233277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Polypyrrole (PPy)-based nanocomposite materials are of great interest to the scientific community owing to their usefulness in designing state-of-the-art industrial applications, such as fuel cells, catalysts and sensors, energy devices, and especially batteries. However, the commercialization of these materials has not yet reached a satisfactory level of implementation. More research is required for the design and synthesis of PPy-based composite materials for numerous types of battery applications. Due to the rising demand for environmentally friendly, cost-effective, and sustainable energy, battery applications are a significant solution to the energy crisis, utilizing suitable materials like PPy-based composites. Among the conducting polymers, PPy is considered an important class of materials owing to their ease of synthesis, low cost, environmentally friendly nature, and so on. In this context, PPy-based nanocomposites may be very promising due to their nanostructural properties and distinct morphological topography, which are vital concerns for their applications for battery applications. Such features of PPy-based nanocomposites make them particularly promising for next-generation electrode materials. However, the design and fabrication of appropriate PPy-based nanocomposites for battery applications is still a challenging area of research. This review paper describes the current progress on the synthesizing of PPy-based composites for battery applications along with their morphological topography. We discussed here the recent progress on the synthesis of different PPy-based composites, including PPy/S, PPy/MnOx, MWCNT/PPy, V2O5/PPy, Cl-doped PPy/rGO, and Fe/α-MnO2@PPy composites, by a polymerization approach for numerous battery applications. The insights presented in this review aim to provide a comprehensive reference for the future development of PPy-based composites in battery technology.
Collapse
Affiliation(s)
- Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
3
|
Gu Q, Cao Y, Lu M, Zhang B. MXene materials in electrochemical energy storage systems. Chem Commun (Camb) 2024; 60:8339-8349. [PMID: 39016016 DOI: 10.1039/d4cc02659d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MXenes, due to their unique geometric structure, rich elemental composition, and intrinsic physicochemical properties, have multi-functional applications. In the field of electrochemical energy storage, MXenes can be used as active components, conductive agents, supports, and catalysts in ion-intercalated batteries, metal-sulfur batteries, and supercapacitors. The electrochemical performance of MXene materials is closely related to their distinctive physical and chemical properties, which depend on their geometry, surface functional groups, and elemental composition. How to regulate MXene materials to optimize electrochemical functions is a key scientific challenge. Herein, we correlated the function of MXene materials with their interlayer structure, surface functional groups, and specific catalytic sites, analyzed the electrochemical function of MXene materials, and showed how to design the electrochemical function of MXene materials based on ion/electron transport. Additionally, this feature article provides an outlook on the opportunities and challenges for MXenes, offering theoretical and technical guidance on using MXene materials in energy storage systems.
Collapse
Affiliation(s)
- Qinhua Gu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, China
| | - Yiqi Cao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China.
| | - Ming Lu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
- The Joint Laboratory of MXene Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China.
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, China
| |
Collapse
|
4
|
Liu X, Chen Y, Zhang H, Zhuo L, Huang Q, Zhang W, Chen H, Ling Q. Synthesis of MXene-based nanocomposite electrode supported by PEDOT:PSS-modified cotton fabric for high-performance wearable supercapacitor. J Colloid Interface Sci 2024; 660:735-745. [PMID: 38271809 DOI: 10.1016/j.jcis.2024.01.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
The rapid development of wearable and portable electronic devices prompts the ever-growing demand for wearable, flexible, and light-weight power sources. In this work, a MXene/GNS/PPy@PEDOT/Cotton nanocomposite electrode with excellent electrochemical performances was fabricated using cotton fabric as a substrate. Poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) was coated on the cotton fabric to obtain a conductive substrate through a controllable dip-drying coating process, while a nanocomposite consisting of MXene, Graphene nanoscroll (GNS), and polypyrrole (PPy) was directly synthesized and deposited on the PEDOT:PSS-modified cotton fabric via a one-step in situ polymerization method. The resultant MXene/GNS/PPy@PEDOT/Cotton electrode delivers excellent electrochemical performances including an ultra-high areal capacitance of 4877.2 mF·cm-2 and stable cycling stability with 90 % capacitance retention after 3000 cycles. Moreover, the flexible symmetrical supercapacitor (FSC) assembled with the MXene/GNS/PPy@PEDOT/Cotton electrodes demonstrates a prominent areal capacitance (2685.28 mF·cm-2 at a current density of 1 mA·cm-2) and a high energy density (322.15 μWh·cm-2 at a power density of 0.46 mW·cm-2). In addition, the application of the FSC for wearable electronic devices was demonstrated.
Collapse
Affiliation(s)
- Xiaohong Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Yudong Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Huangqing Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Leilin Zhuo
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Qingwei Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Wengong Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Hong Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China.
| | - Qidan Ling
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| |
Collapse
|
5
|
Hu J, Dong M. Recent advances in two-dimensional nanomaterials for sustainable wearable electronic devices. J Nanobiotechnology 2024; 22:63. [PMID: 38360734 PMCID: PMC10870598 DOI: 10.1186/s12951-023-02274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 02/17/2024] Open
Abstract
The widespread adoption of smart terminals has significantly boosted the market potential for wearable electronic devices. Two-dimensional (2D) nanomaterials show great promise for flexible, wearable electronics of next-generation electronic materials and have potential in energy, optoelectronics, and electronics. First, this review focuses on the importance of functionalization/defects in 2D nanomaterials, a discussion of different kinds of 2D materials for wearable devices, and the overall structure-property relationship of 2D materials. Then, in this comprehensive review, we delve into the burgeoning realm of emerging applications for 2D nanomaterial-based flexible wearable electronics, spanning diverse domains such as energy, medical health, and displays. A meticulous exploration is presented, elucidating the intricate processes involved in tailoring material properties for specific applications. Each research direction is dissected, offering insightful perspectives and dialectical evaluations that illuminate future trajectories and inspire fruitful investigations in this rapidly evolving field.
Collapse
Affiliation(s)
- Jing Hu
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
6
|
Ampong DN, Agyekum E, Agyemang FO, Mensah-Darkwa K, Andrews A, Kumar A, Gupta RK. MXene: fundamentals to applications in electrochemical energy storage. NANOSCALE RESEARCH LETTERS 2023; 18:3. [PMID: 36732431 DOI: 10.1186/s11671-023-03786-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/31/2023] [Indexed: 05/24/2023]
Abstract
A new, sizable family of 2D transition metal carbonitrides, carbides, and nitrides known as MXenes has attracted a lot of attention in recent years. This is because MXenes exhibit a variety of intriguing physical, chemical, mechanical, and electrochemical characteristics that are closely linked to the wide variety of their surface terminations and elemental compositions. Particularly, MXenes are readily converted into composites with materials including oxides, polymers, and CNTs, which makes it possible to modify their characteristics for a variety of uses. MXenes and MXene-based composites have demonstrated tremendous promise in environmental applications due to their excellent reducibility, conductivity, and biocompatibility, in addition to their well-known rise to prominence as electrode materials in the energy storage sector. The remarkable characteristics of 2D MXene, including high conductivity, high specific surface area, and enhanced hydrophilicity, account for the increasing prominence of its use in storage devices. In this review, we highlight the most recent developments in the use of MXenes and MXene-based composites for electrochemical energy storage while summarizing their synthesis and characteristics. Key attention is paid to applications in supercapacitors, batteries, and their flexible components. Future research challenges and perspectives are also described.
Collapse
Affiliation(s)
- Daniel Nframah Ampong
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuel Agyekum
- Department of Material Science and Engineering, Hohai University, Nanjing, China
| | - Frank Ofori Agyemang
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwadwo Mensah-Darkwa
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Anthony Andrews
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India.
| | - Ram K Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA.
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
| |
Collapse
|
7
|
Zhang P, Sui Y, Ma W, Duan N, Liu Q, Zhang B, Niu H, Qin C. Tightly intercalated Ti 3C 2T x/MoO 3-x/PEDOT:PSS free-standing films with high volumetric/gravimetric performance for flexible solid-state supercapacitors. Dalton Trans 2023; 52:710-720. [PMID: 36562186 DOI: 10.1039/d2dt03467k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ti3C2Tx-MXenes have extremely promising applications in electrochemistry, but the development of Ti3C2Tx is limited due to severe self-stacking problem. Here, we introduced oxygen vacancy-enriched molybdenum trioxide (MoO3-x) with pseudocapacitive properties as the intercalator of Ti3C2Tx and PEDOT with high electronic conductivity as the co-intercalator and conductive binder of Ti3C2Tx to synthesize Ti3C2Tx/MoO3-x/PEDOT:PSS (TMP) free-standing films by vacuum-assisted filtration and H2SO4 soaking. The tightly intercalated free-standing film structure can effectively improve the self-stacking phenomenon of Ti3C2Tx, expose more active sites and facilitate electron/ion transport, thus making TMP show excellent electrochemical performance. The volumetric and gravimetric capacitance of optimized TMP-2 can reach 1898.5 F cm-3 and 523.0 F g-1 at 1 A g-1 with a rate performance of 90.5% at the current density from 1 A g-1 to 20 A g-1, which is significantly better than those of MXene-based composites reported in the literature. The directly-assembled TMP-2//TMP-2 flexible solid-state supercapacitor displays high energy/power output performances (25.1 W h L-1 at 6383.1 W L-1, 6.9 W h kg-1 at 1758.4 W kg-1) and there is no obvious change after 100 cycles at a bending angle of 180°. As a result, the tightly intercalated TMP-2 free-standing film with high volumetric/gravimetric capacitances is a promising material for flexible energy storage devices.
Collapse
Affiliation(s)
- Pengxue Zhang
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China.
| | - Yan Sui
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China.
| | - Weijing Ma
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China.
| | - Nannan Duan
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China.
| | - Qi Liu
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China.
| | - Bingmiao Zhang
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China.
| | - Haijun Niu
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China. .,Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, Harbin, 150080, China
| | - Chuanli Qin
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China. .,Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, Harbin, 150080, China
| |
Collapse
|
8
|
Adekoya G, Adekoya OC, Sadiku RE, Hamam Y, Ray SS. Applications of MXene-Containing Polypyrrole Nanocomposites in Electrochemical Energy Storage and Conversion. ACS OMEGA 2022; 7:39498-39519. [PMID: 36385802 PMCID: PMC9648120 DOI: 10.1021/acsomega.2c02706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The atomically thick two-dimensional (2D) materials are at the forefront of revolutionary technologies for energy storage devices. Due to their fascinating physical and chemical features, these materials have gotten a lot of attention. They are particularly appealing for a wide range of applications, including electrochemical storage systems, due to their simplicity of property tuning. The MXene is a type of 2D material that is widely recognized for its exceptional electrochemical characteristics. The use of these materials in conjunction with conducting polymers, notably polypyrrole (PPy), has opened new possibilities for lightweight, flexible, and portable electrodes. Therefore, herein we report a comprehensive review of recent achievements in the production of MXene/PPy nanocomposites. The structural-property relationship of this class of nanocomposites was taken into consideration with an elaborate discussion of the various characterizations employed. As a result, this research gives a narrative explanation of how PPy interacts with distinct MXenes to produce desirable high-performance nanocomposites. The effects of MXene incorporation on the thermal, electrical, and electrochemical characteristics of the resultant nanocomposites were discussed. Finally, it is critically reviewed and presented as an advanced composite material in electrochemical storage devices, energy conversion, electrochemical sensors, and electromagnetic interference shielding.
Collapse
Affiliation(s)
- Gbolahan
Joseph Adekoya
- Institute
of Nanoengineering Research (INER) and Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, CSIR, Pretoria 0001, South Africa
| | - Oluwasegun Chijioke Adekoya
- Institute
of Nanoengineering Research (INER) and Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Rotimi Emmanuel Sadiku
- Institute
of Nanoengineering Research (INER) and Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Yskandar Hamam
- Department
of Electrical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
- École
Supérieure d’Ingénieurs en Électrotechnique
et Électronique, Cité Descartes, 2 Boulevard Blaise Pascal, 93160 Noisy-le-Grand, Paris, France
| | - Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, CSIR, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doornforntein, Johannesburg 2028, South Africa
| |
Collapse
|
9
|
Ultrafast synthesizing nanoflower-like composites of metal carbides and metal oxyhydroxides towards high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Flexible quasi-solid-state supercapacitors based on Ti3C2-Polypyrrole nanocomposites. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Wang O, Jia X, Liu J, Sun M, Wu J. Rapid and simple preparation of an MXene/polypyrrole-based bacteria imprinted sensor for ultrasensitive Salmonella detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Low-Pt Amount Supported Polypyrrole/MXene 1D/2D Electrocatalyst for Efficient Hydrogen Evolution Reaction. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00731-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Ezika AC, Sadiku ER, Ray SS, Hamam Y, Folorunso O, Adekoya GJ. Emerging Advancements in Polypyrrole MXene Hybrid Nanoarchitectonics for Capacitive Energy Storage Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02280-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Najam T, Shah SSA, Peng L, Javed MS, Imran M, Zhao MQ, Tsiakaras P. Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214339] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Idumah CI, Ezeani OE, Okonkwo UC, Nwuzor IC, Odera SR. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02243-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
|
17
|
Li S, Zhang L, Guo Y, Zhang Q, Aleksandrzak M, Mijowska E, Chen X. Fabrication and characterization of a TiBs@MCN cable-like photocatalyst with high photocatalytic performance under visible light irradiation. NEW J CHEM 2022. [DOI: 10.1039/d2nj00414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cable-like photocatalyst, TiBs@MCN, with a larger specific surface area and higher visible-light photocatalytic activity, is successfully fabricated by an in situ hydrothermal self-assembly approach.
Collapse
Affiliation(s)
- Shiyun Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Luxi Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yuqiong Guo
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Qiaoyu Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Malgorzata Aleksandrzak
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Ewa Mijowska
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Xuecheng Chen
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| |
Collapse
|
18
|
Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Zhao Z, Xia K, Hou Y, Zhang Q, Ye Z, Lu J. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem Soc Rev 2021; 50:12702-12743. [PMID: 34643198 DOI: 10.1039/d1cs00800e] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid development of portable/wearable electronics proposes new demands for energy storage devices, which are flexibility, smart functions and long-time outdoor operation. Supercapacitors (SCs) show great potential in portable/wearable applications, and the recently developed flexible, smart and self-sustainable supercapacitors greatly meet the above demands. In these supercapacitors, conductive polymers (CPs) are widely applied due to their high flexibility, conductivity, pseudo-capacitance, smart characteristics and moderate preparation conditions. Herein, we'd like to introduce the CP-based flexible, smart and self-sustainable supercapacitors for portable/wearable electronics. This review first summarizes the flexible SCs based on CPs and their composites with carbon materials and metal compounds. The smart supercapacitors, i.e., electrochromic, electrochemical actuated, stretchable, self-healing and stimuli-sensitive ones, are then presented. The self-sustainable SCs which integrate SC units with energy-harvesting units in one compact configuration are also introduced. The last section highlights some current challenges and future perspectives of this thriving field.
Collapse
Affiliation(s)
- Zhenyun Zhao
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Kequan Xia
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. .,Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. .,Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| |
Collapse
|
20
|
Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Zong H, Qi R, Yu K, Zhu Z. Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Wu H, Tan H, Chen L, Yang B, Hou Y, Lei L, Li Z. Stainless steel cloth modified by carbon nanoparticles of Chinese ink as scalable and high-performance anode in microbial fuel cell. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Gui JC, Han L, Cao WY. Lamellar MXene: A novel 2D nanomaterial for electrochemical sensors. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01593-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Liang W, Zhitomirsky I. Composite Fe 3O 4-MXene-Carbon Nanotube Electrodes for Supercapacitors Prepared Using the New Colloidal Method. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2930. [PMID: 34072315 PMCID: PMC8199491 DOI: 10.3390/ma14112930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022]
Abstract
MXenes, such as Ti3C2Tx, are promising materials for electrodes of supercapacitors (SCs). Colloidal techniques have potential for the fabrication of advanced Ti3C2Tx composites with high areal capacitance (CS). This paper reports the fabrication of Ti3C2TX-Fe3O4-multiwalled carbon nanotube (CNT) electrodes, which show CS of 5.52 F cm-2 in the negative potential range in 0.5 M Na2SO4 electrolyte. Good capacitive performance is achieved at a mass loading of 35 mg cm-2 due to the use of Celestine blue (CB) as a co-dispersant for individual materials. The mechanisms of CB adsorption on Ti3C2TX, Fe3O4, and CNTs and their electrostatic co-dispersion are discussed. The comparison of the capacitive behavior of Ti3C2TX-Fe3O4-CNT electrodes with Ti3C2TX-CNT and Fe3O4-CNT electrodes for the same active mass, electrode thickness and CNT content reveals a synergistic effect of the individual capacitive materials, which is observed due to the use of CB. The high CS of Ti3C2TX-Fe3O4-CNT composites makes them promising materials for application in negative electrodes of asymmetric SC devices.
Collapse
Affiliation(s)
| | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada;
| |
Collapse
|
25
|
Yu L, Lu L, Zhou X, Xu L, Alhalili Z, Wang F. Strategies for Fabricating High‐Performance Electrochemical Energy‐Storage Devices by MXenes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - XiaoHong Zhou
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts Shaqra University Sajir Riyadh Saudi Arabia
| | - FengJun Wang
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| |
Collapse
|
26
|
Chen X, Liu Y, Zhou Q, Su F. Facile Synthesis of MnO
2
/Ti
3
C
2
T
x
/CC as Positive Electrode of All‐Solid‐State Flexible Asymmetric Supercapacitor. ChemistrySelect 2020. [DOI: 10.1002/slct.202004181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiuhang Chen
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou 510640 China
| | - Yong Liu
- China Electronic Product Reliability and Environment Testing Research Institute Guangzhou 510610 China
| | - Qiang Zhou
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou 510640 China
| | - Fenghua Su
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
27
|
Munir S, Rasheed A, Rasheed T, Ayman I, Ajmal S, Rehman A, Shakir I, Agboola PO, Warsi MF. Exploring the Influence of Critical Parameters for the Effective Synthesis of High-Quality 2D MXene. ACS OMEGA 2020; 5:26845-26854. [PMID: 33111010 PMCID: PMC7581232 DOI: 10.1021/acsomega.0c03970] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 05/07/2023]
Abstract
Recently, a new class of two-dimensional (2D) materials, called MXene, consisting of layers of transition-metal carbides and nitrides/carbonitrides has been introduced. MXene, a multifunctional material with hydrophilic nature and excellent electrical conductivity and chemical stabilities, can be applied in diverse research areas such as energy harvesting and its storage, water purification, thermal dissipation, and gas sensing. To achieve the best quality of MXene, optimization of some important synthetic parameters is highly required such as an optimized etchant concentration to remove an "A" element from the MAX phase and sonication time for the efficient exfoliation of MXene flakes. Besides, there is a need to disclose that particular solvent through which intercalation can easily be achieved. In this work, we optimized the abovementioned critical parameters for the synthesis of good-quality MXene. Our results clearly explain the variations in the quality of MXene under applied etchant concentrations, solvents for better intercalation, and optimization of sonication time for better exfoliation. The obtained results suggest that 30% HF as an etchant, dimethyl sulfoxide (DMSO) as a solvent, and 135 min as the sonication time are effective parameters for the synthesis of good-quality MXene. We expect that this report will be helpful for the young research community to synthesize good-quality MXene with the required properties.
Collapse
Affiliation(s)
- Sana Munir
- Department
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aamir Rasheed
- Department
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tabinda Rasheed
- Department
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Imtisal Ayman
- Department
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sara Ajmal
- Department
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rehman
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Imran Shakir
- Sustainable
Energy Technologies Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Philips O. Agboola
- College
of Engineering Al-Muzahmia Branch, King
Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Muhammad Farooq Warsi
- Department
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
28
|
Cao A, Li Y, Chen Z, Wang Y, Li T, Han Y. Polymerization of polypyrrole nanospheres on carbon nanotubes with PMo12-xWx as oxidant and redox dopant for supercapacitor. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Wu S, Wang H, Li L, Guo M, Qi Z, Zhang Q, Zhou Y. Intercalated MXene-based layered composites: Preparation and application. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Zang X, Wang J, Qin Y, Wang T, He C, Shao Q, Zhu H, Cao N. Enhancing Capacitance Performance of Ti 3C 2T x MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction. NANO-MICRO LETTERS 2020; 12:77. [PMID: 34138313 PMCID: PMC7770793 DOI: 10.1007/s40820-020-0415-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/19/2020] [Indexed: 05/18/2023]
Abstract
Ti3C2Tx, a novel two-dimensional layer material, is widely used as electrode materials of supercapacitor due to its good metal conductivity, redox reaction active surface, and so on. However, there are many challenges to be addressed which impede Ti3C2Tx obtaining the ideal specific capacitance, such as restacking, re-crushing, and oxidation of titanium. Recently, many advances have been proposed to enhance capacitance performance of Ti3C2Tx. In this review, recent strategies for improving specific capacitance are summarized and compared, for example, film formation, surface modification, and composite method. Furthermore, in order to comprehend the mechanism of those efforts, this review analyzes the energy storage performance in different electrolytes and influencing factors. This review is expected to predict redouble research direction of Ti3C2Tx materials in supercapacitors.
Collapse
Affiliation(s)
- Xiaobei Zang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Jiali Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Yijiang Qin
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Teng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Chengpeng He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Qingguo Shao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Hongwei Zhu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ning Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|