1
|
Patil SS, Patil PS. 3D Bode analysis of nickel pyrophosphate electrode: A key to understanding the charge storage dynamics. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
BoopathiRaja R, S.Vadivel, Rathinavel S, Parthibavarmana M, Ezhilarasana M. Shape-controlled synthesis of polypyrrole incorporated urchin-flower like Ni2P2O7 cathode material for asymmetric supercapacitor applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han YK, Dubal DP. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002806. [PMID: 32761793 DOI: 10.1002/smll.202002806] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Indexed: 05/13/2023]
Abstract
The development of pseudocapacitive materials for energy-oriented applications has stimulated considerable interest in recent years due to their high energy-storing capacity with high power outputs. Nevertheless, the utilization of nanosized active materials in batteries leads to fast redox kinetics due to the improved surface area and short diffusion pathways, which shifts their electrochemical signatures from battery-like to the pseudocapacitive-like behavior. As a result, it becomes challenging to distinguish "pseudocapacitive" and "battery" materials. Such misconceptions have further impacted on the final device configurations. This Review is an earnest effort to clarify the confusion between the battery and pseudocapacitive materials by providing their true meanings and correct performance metrics. A method to distinguish battery-type and pseudocapacitive materials using the electrochemical signatures and quantitative kinetics analysis is outlined. Taking solid-state supercapacitors (SSCs, only polymer gel electrolytes) as an example, the distinction between asymmetric and hybrid supercapacitors is discussed. The state-of-the-art progress in the engineering of active materials is summarized, which will guide for the development of real-pseudocapacitive energy storage systems.
Collapse
Affiliation(s)
- Nilesh R Chodankar
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Hong Duc Pham
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Ashok Kumar Nanjundan
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Joseph F S Fernando
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu, Jammu & Kashmir, 181221, India
| | - Dmitri Golberg
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Young-Kyu Han
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Deepak P Dubal
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| |
Collapse
|