1
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Ye F, Yang Y, Liu P, Feng Y, Cao Y, Cao D, Ta L, Ma X, Xu C. In-situ porous flake heterostructured NiCoP/Ni foam as electrocatalyst for hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Chen J, Ying J, Xiao Y, Dong Y, Ozoemena KI, Lenaerts S, Yang X. Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. SCIENCE CHINA MATERIALS 2022; 65:2685-2693. [PMID: 35668742 PMCID: PMC9136762 DOI: 10.1007/s40843-022-2061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Rational composition design of trimetallic phosphide catalysts is of significant importance for enhanced surface reaction and efficient catalytic performance. Herein, hierarchical Co x Ni y Fe z P with precise control of stoichiometric metallic elements (x:y:z = (1-10):(1-10):1) has been synthesized, and Co1.3Ni0.5Fe0.2P, as the most optimal composition, exhibits remarkable catalytic activity (η = 320 mV at 10 mA cm-2) and long-term stability (ignorable decrease after 10 h continuous test at the current density of 10 mA cm-2) toward oxygen evolution reaction (OER). It is found that the surface P in Co1.3Ni0.5Fe0.2P was replaced by O under the OER process. The density function theory calculations before and after long-term stability tests suggest the clear increasing of the density of states near the Fermi level of Co1.3Ni0.5Fe0.2P/Co1.3Ni0.5Fe0.2O, which could enhance the OH- adsorption of our electrocatalysts and the corresponding OER performance. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s40843-022-2061-x.
Collapse
Affiliation(s)
- Jiangbo Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070 China
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Yuxuan Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Yuan Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070 China
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050 South Africa
| | - Silvia Lenaerts
- Research Group Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020 Belgium
| | - Xiaoyu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070 China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 USA
| |
Collapse
|
4
|
Xue Y, Yan Q, Bai X, Xu Y, Zhang X, Li Y, Zhu K, Ye K, Yan J, Cao D, Wang G. Ruthenium-nickel-cobalt alloy nanoparticles embedded in hollow carbon microtubes as a bifunctional mosaic catalyst for overall water splitting. J Colloid Interface Sci 2022; 612:710-721. [PMID: 35032926 DOI: 10.1016/j.jcis.2022.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/15/2021] [Accepted: 01/01/2022] [Indexed: 01/18/2023]
Abstract
The development of efficient bifunctional catalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential for reducing the cost of hydrogen production by water splitting. Herein, hollow microtubes composed of RuNi1Co1 alloy nanoparticles uniformly embedded in the carbon matrix (RuNi1Co1@CMT) are prepared through a simple impregnation followed by reduction. Benefiting from the unique mosaic structure and the synergistic effect between Ru and NiCo, RuNi1Co1@CMT achieves more exposed active sites and improved reaction kinetics. As a consequence, RuNi1Co1@CMT exhibits considerable catalytic activities with the overpotentials of 78 mV for HER and 299 mV for OER at 10 mA cm-2 in 1 M KOH. In addition, RuNi1Co1@CMT exhibits excellent stability for up to 30 h in both HER and OER processes at 20 mA cm-2, which is attributed to the protection of the RuNi1Co1 alloy particles by the carbon layer. Furthermore, the assembled RuNi1Co1@CMT || RuNi1Co1@CMT overall water splitting system shows a cell voltage of 1.58 V at 10 mA cm-2. The density functional theory (DFT) calculations indicate that the addition of Ru can optimize the hydrogen adsorption free energy of Ni and Co sites. Finally, a solar panel-driven water splitting device is built, which can realize green and sustainable hydrogen production. The fabrication of RuNi1Co1@CMT provides a new way for the preparation of effective alloy nanomaterials for energy storage and conversion.
Collapse
Affiliation(s)
- Yanqin Xue
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qing Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China; School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, PR China.
| | - Xiaojing Bai
- College of Materials Science and Engineering, Anyang Institute of Technology, Anyang, Henan 455000, PR China
| | - Yanyan Xu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Xuan Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Yiju Li
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Ke Ye
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jun Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
5
|
Díaz-Duran AK, Iadarola-Pérez G, Halac EB, Roncaroli F. Trifunctional Catalysts for Overall Water Splitting and Oxygen Reduction Reaction Derived from Co,Ni MOFs. Top Catal 2022. [DOI: 10.1007/s11244-022-01611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Sun L, Luo Q, Dai Z, Ma F. Material libraries for electrocatalytic overall water splitting. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Feng Z, Sui Y, Sun Z, Qi J, Wei F, Ren Y, Zhan Z, Zhou M, Meng D, Zhang L, Ma L, Wang Q. Controllable synthesis of flower-like Mn-Co-P nanosheets as bifunctional electrocatalysts for overall water splitting. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Yu X, He X, Li R, Gou X. One-step synthesis of amorphous nickel iron phosphide hierarchical nanostructures for water electrolysis with superb stability at high current density. Dalton Trans 2021; 50:8102-8110. [PMID: 34019054 DOI: 10.1039/d1dt00852h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of noble-metal-free high-performance bifunctional catalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is essential but challenging for hydrogen production from water electrolysis. Herein, amorphous bimetallic nickel-iron phosphide hierarchical nanostructures enrooted on nickel-iron alloy foam (NiFeP/NFF) are facilely fabricated via direct phosphidation of NFF at low temperature and developed as an efficient self-supporting bifunctional electrocatalyst to catalyze both the OER and HER with high activity, fast kinetics and excellent stability. Moreover, an alkaline water electrolyzer simultaneously utilizing NiFeP/NFF as the cathode and anode only needs a cell voltage of 1.58 V to afford a current density of 10 mA cm-2, overpassing most of the reported bifunctional electrocatalysts and comparable to noble metal-based ones. Impressively, the NiFeP/NFF-based symmetric electrolyzer can work well without appreciable performance degradation at a high current density of 500 mA cm-2 for over 1000 h for continuous hydrogen production with 100% faradaic efficiency, showing superb durability and great promise for industrial application.
Collapse
Affiliation(s)
- Xuefeng Yu
- Chemical Synthesis and Pollution Control key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P. R. China.
| | - Xun He
- Chemical Synthesis and Pollution Control key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P. R. China.
| | - Rong Li
- Chemical Synthesis and Pollution Control key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P. R. China.
| | - Xinglong Gou
- Chemical Synthesis and Pollution Control key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P. R. China.
| |
Collapse
|