1
|
Yu Z, Wang R, Tang H, Zheng D, Yu J. 3,6-Dimethoxythieno[3,2-b]thiophene-Based Bifunctional Electrodes for High-Performance Electrochromic Supercapacitors Prepared by One-Step Electrodeposition. Polymers (Basel) 2024; 16:2313. [PMID: 39204533 PMCID: PMC11359075 DOI: 10.3390/polym16162313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
An integrated visual energy system consisting of conjugated polymer electrodes is promising for combining electrochromism with energy storage. In this work, we obtained copolymer bifunctional electrodes poly(3,6-dimethoxythieno[3,2-b]thiophene-co-2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethanol)(P(TT-OMe-co-EDTM)) by one-step electrochemical copolymerization, which exhibits favorable electrochromic and capacitive energy storage properties. Because of the synergistic effect of PTT-OMe and PEDTM, the prepared copolymers show better flexibility. Moreover, the morphology and electrochemical properties of the copolymers could be adjusted by depositing different molar ratios of 3,6-dimethoxythieno[3,2-b]thiophene (TT-OMe) and 2,3-dihydrothieno[3,4-b][1,4] dioxin-3-ylmethanol (EDTM). The P(TT-OMe-co-EDTM) electrodes realized a high specific capacitance (190 F/g at 5 mV/s) and recognizable color conversion. This work provides a novel and simple way to synergistically improve electrochromic and energy storage properties and develop thiophene-based conducting polymers for electrochromic energy storage devices.
Collapse
Affiliation(s)
| | | | | | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (R.W.); (H.T.)
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (R.W.); (H.T.)
| |
Collapse
|
2
|
He Y, Zhou W, Xu J. Rare Earth-Based Nanomaterials for Supercapacitors: Preparation, Structure Engineering and Application. CHEMSUSCHEM 2022; 15:e202200469. [PMID: 35446482 DOI: 10.1002/cssc.202200469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Supercapacitors (SCs) can effectively alleviate problems such as energy shortage and serious greenhouse effect. The properties of electrode materials directly affect the performance of SCs. Rare earth (RE) is known as "modern industrial vitamins", and their functional materials have been listed as key strategic materials. In the past few years, the number of scientific reports on RE-based nanomaterials for SCs has increased rapidly, confirming that adding RE elements or compounds to the host electrode materials with various nanostructured morphologies can greatly enhance their electrochemical performance. Although RE-based nanomaterials have made rapid progress in SCs, there are very few works providing a comprehensive survey of this field. In view of this, a comprehensive overview of RE-based nanomaterials for SCs is provided here, including the preparation methods, nanostructure engineering, compounds, and composites, along with their capacitance performances. The structure-activity relationships are discussed and highlighted. Meanwhile, the future challenges and perspectives are also pointed out. This Review can not only provide guidance for the further development of SCs but also arouse great interest in RE-based nanomaterials in other research fields such as electrocatalysis, photovoltaic cells, and lithium batteries.
Collapse
Affiliation(s)
- Yao He
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Weiqiang Zhou
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
- Jiangxi Engineering Laboratory of Waterborne Coatings, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| |
Collapse
|
3
|
Liang A, Cai Y, Wang J, Xu L, Zhou W, Xue Z, He Y, Xu J, Duan X. Co-electrodeposited porous poplar flower-like poly(hydroxymethyl-3,4-ethylenedioxythiophene)/PEG/WS2 hybrid material for high-performance supercapacitor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Xu L, Zhang Y, Zhou W, Jiang F, Zhang H, Jiang Q, Jia Y, Wang R, Liang A, Xu J, Duan X. Fused Heterocyclic Molecule-Functionalized N-Doped Reduced Graphene Oxide by Non-Covalent Bonds for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45202-45213. [PMID: 32924424 DOI: 10.1021/acsami.0c13377] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Indole molecules with fused heteroaromatic structures can be adsorbed on the N-doped graphene surface through the π-π interaction. Therefore, the indole-functionalized N-doped graphene (InFGN) with mesopores is successfully fabricated by a simple hydrothermal method and subsequent vacuum freeze-drying process. The microstructure, thickness, element composition, pore structure, and electrochemical performance of InFGN are analyzed via SEM, TEM, AFM, BET, UV-vis, FT-IR, XPS, Raman, XRD, and electrochemical technologies. Since the five-membered aromatic heterocycles are electron-rich, the indole molecules fixed on the N-doped graphene surface can repair the structural defects generated by N doping. Electrochemical measurements show that the InFGN electrode highlights an excellent capacitance of 622.3 F g-1 at 2 A g-1 and a durable cycling life of 100.5% after 5000 charging/discharging cycle times. For further practical application, a symmetric device has been assembled by using InFGN electrodes, which realizes high-power and energy densities (18.8-20.6 Wh kg-1 at 800-8000 W kg-1). This study provides a shortcut for building green supercapacitors with enhanced energy storage performance.
Collapse
Affiliation(s)
- Liming Xu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yingying Zhang
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Weiqiang Zhou
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
- Jiangxi Engineering Laboratory of Waterborne Coatings, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Fengxing Jiang
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Hui Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Qinglin Jiang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510150, PR China
| | - Yanhua Jia
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510150, PR China
| | - Rui Wang
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Aiqin Liang
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xuemin Duan
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| |
Collapse
|
5
|
Wang R, Xue Y, Jiang F, Zhou W, Xu J, Duan X, Zhu D, Xu L, Cai Y, Liang A. Trifluoromethyl functionalized polyindoles: electrosynthesis, characterization, and improved capacitive performance. NEW J CHEM 2020. [DOI: 10.1039/d0nj00812e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trifluoromethyl functionalized polyindoles, comb-like 5-PFMIn and flower-like 6-PFMIn, are prepared and they exhibit high specific capacitance and good stability.
Collapse
Affiliation(s)
- Rui Wang
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
- Jiangxi Engineering Laboratory of Waterborne Coatings
| | - Yu Xue
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Fengxing Jiang
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Weiqiang Zhou
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
- Jiangxi Engineering Laboratory of Waterborne Coatings
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
- College of Chemistry and Molecular Engineering
| | - Xuemin Duan
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Danhua Zhu
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Liming Xu
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Yue Cai
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Aiqin Liang
- Flexible Electronics Innovation Institute (FEII)
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| |
Collapse
|