1
|
Li G, Wang B, Li S, Li X, Yan R, Tan X, Liang J, Zhou Z. Competitive electrochemical aptasensor for high sensitivity detection of liver cancer marker GP73 based on rGO-Fc-PANi nanocomposites. Bioelectrochemistry 2024; 160:108767. [PMID: 38878458 DOI: 10.1016/j.bioelechem.2024.108767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 09/15/2024]
Abstract
Golgi protein 73 (GP73) is a novel tumor marker in the early diagnosis and prognosis of hepatocellular carcinoma (HCC). Herein, a competitive electrochemical aptasensor for detecting GP73 was constructed using reduced graphene oxide-ferrocene-polyaniline nanocomposite (rGO-Fc-PANi) as the biosensing platform. The rGO-Fc-PANi had larger specific surface area, excellent conductivity and outstanding electroactive performance, which served as nanocarrier for GP73 aptamer (GP73Apt) binding and as redox nanoprobe for record electrical signal. Then, a complementary chain (cDNA) was fixed to the electrode by hybridization with GP73Apt. When GP73 was present, a competitive process happened among cDNA, GP73Apt and GP73, formed the GP73-GP73Apt stable chemical structure and made cDNA detach from the sensing electrode, resulting in enhancement of electrical signal. The difference in the corresponding peak current before and after the competition can be used to indicate the quantitative of GP73. Under optimal conditions, the DPV current response showed a good log-linear relationship with GP73 concentrations (0.001 ∼ 100.0 ng/mL) with a detection limit of 0.15 pg/mL (S/N = 3). It was successfully used for GP73 detection in human serum with RSDs ranging from 1.08 % to 6.96 %. Therefore, the aptasensor could provide an innovative technology platform and hold a great potential in clinical application.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China
| | - Bo Wang
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Shengnan Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China; School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Xinhao Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China; School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Ruijie Yan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China; School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Xiaohong Tan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, People's Republic of China.
| | - Jintao Liang
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| |
Collapse
|
2
|
Murgueitio Herrera E, Jacome G, Stael C, Arroyo G, Izquierdo A, Debut A, Delgado P, Montalvo G. Green Synthesis of Metal Nanoparticles with Borojó ( Borojoa patinoi) Extracts and Their Application in As Removal in Water Matrix. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1526. [PMID: 39330682 PMCID: PMC11434951 DOI: 10.3390/nano14181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024]
Abstract
The predominant aim of the current research was to generate a proposal for the removal of arsenic, a highly toxic pollutant, encountered within the Papallacta Lagoon in Ecuador. The average concentrations of As yielded ranges between 18 to 652 μg/L, through the use of metallic nanoparticles. Sampling was performed in the lagoon with their respective geographic locations and "in situ" parameters. Nanoparticles of Mn3O4 NPs, Fe3O4 NPs, and CuO NPs were synthesized at a 0.5 M concentration, using the precipitation method, and borojó (Borojoa patinoi) extract was added as an anti-caking agent as well as antioxidant. The nanoparticles were characterized by visible spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. After arsenic removal treatment using nanoparticles, a randomized experimental design of different concentrations (5 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, and 150 mg/L) was applied at laboratory level. The average diameter of Fe3O4NPs ranged from 9 nm to 36 nm, Mn3O4 NPs were 15-20 nm, and CuO NPs ranged from 25 nm to 30 nm. Arsenic removal percentages using Fe3O4 NPs with a concentration of 150 mg/L was 87%; with Mn3O4 NPs, the removal was 70% and CuO NPs of about 63.5%. Finally, these nanoparticles could be used in a water treatment plant for the Papallacta Lagoon.
Collapse
Affiliation(s)
- Erika Murgueitio Herrera
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
- Departamento de Ciencias de la Tierra y de la Construcción, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador;
| | - Gissela Jacome
- Departamento de Ciencias de la Tierra y de la Construcción, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador;
| | - Carina Stael
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Geovanna Arroyo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Andrés Izquierdo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Patricio Delgado
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
- Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador
| | - Gemma Montalvo
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain;
- Instituto Universitario de Investigación en Ciencias Policiales, Universidad de Alcalá, Libreros 27, 28801 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
3
|
Kodous AS, Taha EO, El-Maghraby DF, Hassana AA, Atta MM. Gamma radiation assisted green synthesis of hesperidin-reduced graphene oxide nanocomposite targeted JNK/SMAD4/MMP2 signaling pathway. Sci Rep 2024; 14:11535. [PMID: 38773159 PMCID: PMC11109164 DOI: 10.1038/s41598-024-60347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
In this study, a novel method for the fabrication of hesperidin/reduced graphene oxide nanocomposite (RGOH) with the assistance of gamma rays is reported. The different RGOHs were obtained by varying hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) solution. Hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) were varied to produce the various RGOHs. Upon irradiation with 80 kGy from γ-Ray, the successful reduction of GO occurred in the presence of hesperidin. The reduction process was confirmed by different characterization techniques such as FTIR, XRD, HRTEM, and Raman Spectroscopy. A cytotoxicity study using the MTT method was performed to evaluate the cytotoxic-anticancer effects of arbitrary RGOH on Wi38, CaCo2, and HepG2 cell lines. The assessment of RGOH's anti-inflammatory activity, including the monitoring of IL-1B and IL-6 activities as well as NF-kB gene expression was done. In addition, the anti-invasive and antimetastatic properties of RGOH, ICAM, and VCAM were assessed. Additionally, the expression of the MMP2-9 gene was quantified. The assessment of apoptotic activity was conducted by the detection of gene expressions related to BCl2 and P53. The documentation of the JNK/SMAD4/MMP2 signaling pathway was ultimately accomplished. The findings of our study indicate that RGOH therapy has significant inhibitory effects on the JNK/SMAD4/MMP2 pathway. This suggests that it could be a potential therapeutic option for cancer.
Collapse
Affiliation(s)
- Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Eman O Taha
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| | - Dina F El-Maghraby
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Asmaa A Hassana
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - M M Atta
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
4
|
Wang Y, Wang Y, Wang Y, Liu J. Facial preparation of covalent modified reduced graphene oxide/polyaniline composite and its stable-enhanced electrochemical performance. Heliyon 2023; 9:e13002. [PMID: 36820179 PMCID: PMC9938499 DOI: 10.1016/j.heliyon.2023.e13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Graphene-polyaniline composites have captured extensive attention because of their outstanding performance during the electrochemical process, while their practical applications are limited due to the complex and uncontrollable preparation process. This work provides a simple and controllable preparation route, in which covalent modified reduced graphene oxide (E-RGO) is successfully prepared by ethylenediamine (EDA) and graphene oxide (GO), and E-RGO with different degrees of modification is obtained by adjusting the amount of EDA during the preparation process, and then in situ polymerization of aniline monomer is used to produce E-RGO/PANI in E-RGO suspension. Among them, E-RGO-12 has a relatively stretched sheet, which provides a large support surface for the subsequent in-situ polymerization of aniline and increases the utilization rate of graphene. The PANI network is tightly wrapped on the surface of E-RGO, forming a "PANI-(E-RGO)-PANI" lamellar structure and the single components are connected by covalent bonds and have a strong conjugation effect. The rough surface of the E-RGO/PANI composite and the pores in the PANI network are conducive for the electrochemical process, which increases the active site of electrode reaction, and thus improve the electron transfer rate. E-RGO-12/PANI exhibits superior property with the specific capacitance of 398 F/g at 0.6 A/g, and after the current density changes to 6 A/g, the specific capacitance retention rate is 64.8%. After 2000 cycles, the capacitance retention rate is 76.4%. The current work provides a green and efficient new idea for reducing graphene oxide and preparing E-RGO/PANI composite materials for the energy storage device.
Collapse
Affiliation(s)
- Yapeng Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China,Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Yanxiang Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China,Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China,Corresponding author. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China.
| | - Yongbo Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China,Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Jianjun Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China,Corresponding author. Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China.
| |
Collapse
|
5
|
Payami E, Teimuri-Mofrad R. Ternary nanocomposite of GQDs-PolyFc/Fe3O4/PANI: Design, synthesis, and applied for electrochemical energy storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Payami E, Keynezhad MA, Safa KD, Teimuri-Mofrad R. Development of high-performance supercapacitor based on Fe3O4@SiO2@PolyFc nanoparticles via surface-initiated radical polymerization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Yazar S, Arvas MB, Sahin Y. Hydrothermal Synthesis of Flexible Fe‐Doped Polyaniline/Dye‐Functionalized Carbon Felt Electrode for Supercapacitor Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sibel Yazar
- Department of Chemistry Engineering Faculty Istanbul University-Cerrahpasa Istanbul 34320 Turkey
| | - Melih Besir Arvas
- Science and Technology Application and Research Center Yildiz Technical University Istanbul 34200 Turkey
- Department of Chemistry Faculty of Arts and Science Yildiz Technical University Istanbul 34220 Turkey
| | - Yucel Sahin
- Department of Chemistry Faculty of Arts and Science Yildiz Technical University Istanbul 34220 Turkey
| |
Collapse
|
8
|
Rahimpour S, Luo L, Teimuri-Mofrad R. Preparation of ferrocenyl-furan modified graphene oxide via Diels-Alder click reaction and using of its polypyrrole nanocomposites as supercapacitor electrode material. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Teimuri‐Mofrad R, Payami E, Piriniya A, Hadi R. Green synthesis of ferrocenyl‐modified MnO
2
/Carbon‐based nanocomposite as an outstanding supercapacitor electrode material. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Ayda Piriniya
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
10
|
Du Y, Cao D, Li B, Lü H, Shen Y. Stable conge red doped poly (3,4-ethylene dioxythiophene)/graphene oxide composite as electrode material for high-performance asymmetric supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Payami E, Teimuri‐Mofrad R. CNT‐containing redox active nanohybrid: a promising ferrocenyl‐based electrode material for outstanding energy storage application. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
12
|
|
13
|
Mozaffarnia S, Teimuri-Mofrad R, Rashidi MR. Synthesis of 2-amino-3-cyano-4H-pyran derivatives using GO-Fc@Fe3O4 nanohybrid as a novel recyclable heterogeneous nanocatalyst and preparation of tacrine-naphthopyran hybrids as AChE inhibitors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Li Z, Li M, Fan Q, Qi X, Qu L, Tian M. Smart-Fabric-Based Supercapacitor with Long-Term Durability and Waterproof Properties toward Wearable Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14778-14785. [PMID: 33754690 DOI: 10.1021/acsami.1c02615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid development of wearable electronics and smart textiles has dramatically motivated the generation of flexible textile-based supercapacitors (SCs). However, the rapid evaporation of water moisture in gel electrolyte substantially limits the working durability and performance enhancements of the flexible devices. Therefore, a high-performance multifunctional textile-based SC with long-term durability is highly desired. Herein, a poly(vinyl alcohol) (PVA)/polyacrylamide (PAM) composite gel electrolyte was developed to fabricate multifunctional device with water-retaining and water-proofing properties based on multidimensional hierarchical fabric. And the assembled SC based on composite gel exhibited a superior water-retaining property and long-term working durability (93.29% retention rate after operation for 15 days), whereas the performance of SC based on pure PVA gel declined sharply and only 43.2% capacitance remained. In addition, the assembled SC exhibited enhanced specific capacitance of 707.9 mF/cm2 and high energy density of 62.92 μWh/cm2 and maintained a good stability of 80.8% even after 10 000 cyclic tests. After water repellency treatment, the integrated device immersed in water could still work normally. What's more, the assembled devices could be charged by a portable hand generator, which could be potentially applied for field rescue and military applications. We foresee that this strategy would be a potential route to prepare high-performance multifunctional textile-based SCs for wearable electronic systems and smart textile applications.
Collapse
Affiliation(s)
- Zengqing Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Ming Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Qiang Fan
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Xiangjun Qi
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
- Jiangsu College of Engineering and Technology, Nantong, Jiangsu 226007, P.R. China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| |
Collapse
|
15
|
Hu ML, Abbasi-Azad M, Habibi B, Rouhani F, Moghanni-Bavil-Olyaei H, Liu KG, Morsali A. Electrochemical Applications of Ferrocene-Based Coordination Polymers. Chempluschem 2020; 85:2397-2418. [PMID: 33140916 DOI: 10.1002/cplu.202000584] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Ferrocene and its derivatives, especially ferrocene-based coordination polymers (Fc-CPs), offer the benefits of high thermal stability, two stable redox states, fast electron transfer, and excellent charge/discharge efficiency, thus holding great promise for electrochemical applications. Herein, we describe the synthesis and electrochemical applications of Fc-CPs and reveal how the incorporation of ferrocene units into coordination polymers containing other metals results in unprecedented properties. Moreover, we discuss the usage of Fc-CPs in supercapacitors, batteries, and sensors as well as further applications of these polymers, for example in electrocatalysts, water purification systems, adsorption/storage systems.
Collapse
Affiliation(s)
- Mao-Lin Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Mahsa Abbasi-Azad
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Behnam Habibi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Hamed Moghanni-Bavil-Olyaei
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Kuan-Guan Liu
- State Key Laboratory of High-Efficiency Coal Utilization, and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin, Chuan, 750021, P. R. China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| |
Collapse
|
16
|
Fluoride-free electropolymerization of 3-aminophenylboronic acid in room temperature ionic liquids without exogenous protons. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
A novel composite electrode material derived from bisferrocenyl-functionalized GO and PANI for high performance supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Composites and Copolymers Containing Redox-Active Molecules and Intrinsically Conducting Polymers as Active Masses for Supercapacitor Electrodes—An Introduction. Polymers (Basel) 2020; 12:polym12081835. [PMID: 32824366 PMCID: PMC7464255 DOI: 10.3390/polym12081835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/22/2023] Open
Abstract
In this introductory report, composites and copolymers combining intrinsically conducting polymers and redox-active organic molecules, suggested as active masses without additional binder and conducting agents for supercapacitor electrodes, possibly using the advantageous properties of both constituents, are presented. A brief overview of the few reported examples of the use of such copolymers, composites, and comparable combinations of organic molecules and carbon supports is given. For comparison a few related reports on similar materials without intrinsically conducting polymers are included.
Collapse
|
19
|
Hadi R, Rahimpour K, Payami E, Teimuri‐Mofrad R. Design and green synthesis of 1‐(4‐ferrocenylbutyl)piperazine chemically grafted reduced graphene oxide for supercapacitor application. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Keshvar Rahimpour
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
20
|
Rahimpour K, Teimuri-Mofrad R. Novel hybrid supercapacitor based on ferrocenyl modified graphene quantum dot and polypyrrole nanocomposite. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136207] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Gandara M, Gonçalves ES. Polyaniline supercapacitor electrode and carbon fiber graphene oxide: Electroactive properties at the charging limit. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Payami E, Ahadzadeh I, Mohammadi R, Teimuri-Mofrad R. Design and synthesis of novel binuclear ferrocenyl-intercalated graphene oxide and polyaniline nanocomposite for supercapacitor applications. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136078] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Hadi R, Abbasi H, Payami E, Ahadzadeh I, Teimuri‐Mofrad R. Synthesis, Characterization and Electrochemical Properties of 4‐Azidobutylferrocene‐Grafted Reduced Graphene Oxide‐Polyaniline Nanocomposite for Supercapacitor Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201903726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Hassan Abbasi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Iraj Ahadzadeh
- Department of Physical Chemistry Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| |
Collapse
|