1
|
Yu T, Li S, Zhang L, Li F, Wang J, Pan H, Zhang D. In situ growth of ZIF-67-derived nickel-cobalt-manganese hydroxides on 2D V 2CT x MXene for dual-functional orientation as high-performance asymmetric supercapacitor and electrochemical hydroquinone sensor. J Colloid Interface Sci 2023; 629:546-558. [PMID: 36179575 DOI: 10.1016/j.jcis.2022.09.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Designing dual-functional electrode materials for supercapacitors and pollutant sensors has attracted great interest from researchers for urgent demand in green energy and the environment. In this work, a novel electrode material V2CTx@NiCoMn-OH was successfully constructed for dual-functional orientation via a two-step synthesis strategy, in which the NiCoMn-OH with a three-dimensional (3D) hollow structure was fabricated by employing ZIF-67 as a template and simple anion exchange and composited with the two-dimensional (2D) layered V2CTx MXene. The intercalation of NiCoMn-OH can effectively limit the self-accumulation of V2CTx MXene nanosheets and build a 3D cross-linked hollow structure, thereby broadening the ion transport channel, exposing more active sites of V2CTx@NiCoMn-OH, and simultaneously improving the conductivity of NiCoMn-OH. Benefiting from the unique 3D cross-linked hollow structure, the optimized V2CTx@NiCoMn-OH-20 electrode material exhibits an excellent specific capacitance of 827.45 C g-1 at 1 A g-1. Furthermore, the electrode material has excellent capacitance retention of 88.44% after 10,000 cycles. Moreover, the V2CTx@NiCoMn-OH-20//AC ASC device displays a high energy density of 88.35 Wh kg-1 as well as high power density of 7500 W kg-1 during operation. Additionally, the V2CTx@NiCoMn-OH-20 exhibited excellent electrocatalytic performance in the detection of hydroquinone, including the low detection limit of 0.559 μM (S/N = 3) and the wide linear range of 2-1050 μM. Therefore, the prepared V2CTx@NiCoMn-OH-20 has great potential applications in the fields of supercapacitors and hydroquinone sensors.
Collapse
Affiliation(s)
- Tingting Yu
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shaobin Li
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China; College of Materials Science and Engineering, Advanced Inorganic Function Composites Research Laboratory, Qiqihar University, Qiqihar 161006, China.
| | - Li Zhang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China; College of Materials Science and Engineering, Advanced Inorganic Function Composites Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Fengbo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Jianxin Wang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Hong Pan
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Deqing Zhang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
2
|
Cheng W, Huang W, Zhang A, Du Y, Cui L, Tian P, Liu J. Hierarchical MoO
3
‐MnNi LDH@Cu(OH)
2
Core‐Shell Nanorod Arrays Constructed through In‐Situ Oxidation Combined with a Hydrothermal Strategy for High‐Performance Energy Storage. ChemElectroChem 2022. [DOI: 10.1002/celc.202201051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wenting Cheng
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Wenjun Huang
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Aitang Zhang
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Yiqi Du
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Liang Cui
- College of Materials Science and Engineering Linyi University Linyi 276000 Shandong China
| | - Pengfei Tian
- College of Materials Science and Engineering Linyi University Linyi 276000 Shandong China
| | - Jingquan Liu
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
- College of Materials Science and Engineering Linyi University Linyi 276000 Shandong China
| |
Collapse
|
3
|
Farah Hanis Nik Zaiman N, Shaari N. Review on flower-like structure nickel based catalyst in fuel cell application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Ultrafast synthesizing nanoflower-like composites of metal carbides and metal oxyhydroxides towards high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Li J, Feng Y, Yang L, Yao J. Metal ion-assisted conversion of Co-ZIF-L to CoNi-layered double hydroxides with high electrochemical properties for supercapacitors. J Colloid Interface Sci 2022; 617:383-390. [DOI: 10.1016/j.jcis.2022.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022]
|
6
|
Xu GM, Wang M, Bao HL, Fang PF, Zeng YH, Du L, Wang XL. Design of Ni(OH)2/M-MMT Nanocomposite With Higher Charge Transport as a High Capacity Supercapacitor. Front Chem 2022; 10:916860. [PMID: 35711949 PMCID: PMC9197183 DOI: 10.3389/fchem.2022.916860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nano-petal nickel hydroxide was prepared on multilayered modified montmorillonite (M-MMT) using one-step hydrothermal method for the first time. This nano-petal multilayered nanostructure dominated the ion diffusion path to be shorted and the higher charge transport ability, which caused the higher specific capacitance. The results showed that in the three-electrode system, the specific capacitance of the nanocomposite with 4% M-MMT reached 1068 F/g at 1 A/g and the capacity retention rate was 70.2% after 1,000 cycles at 10 A/g, which was much higher than that of pure Ni(OH)2 (824 F/g at 1 A/g), indicating that the Ni(OH)2/M-MMT nanocomposite would be a new type of environmentally friendly energy storage supercapacitor.
Collapse
Affiliation(s)
- G. M. Xu
- School of Mechanical Engineering, Liaoning Technical University, Fuxin, China
| | - M. Wang
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
- Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Fuxin, China
- *Correspondence: M. Wang,
| | - H. L. Bao
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
| | - P. F. Fang
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Y. H. Zeng
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
| | - L. Du
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
| | - X. L. Wang
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
- Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Fuxin, China
| |
Collapse
|
7
|
Ren X, Gan Z, Sun M, Fang Q, Yan Y, Sun Y, Huang J, Cao B, Shen W, Li Z, Fu Y. Colloidal synthesis of flower-like Zn doped Ni(OH)2@CNTs at room-temperature for hybrid supercapacitor with high rate capability and energy density. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Wang J, Liu Z, Zhao Y. Alcohol hydroxides regulate the growth of Ni-Co layered double hydroxides on carbon fiber cloth as supercapacitor electrode materials. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Supercapacitive Performances of Single‐Phase Quaternary Metal Hydroxychlorides. ChemElectroChem 2021. [DOI: 10.1002/celc.202100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
A synergistic strategy combing amorphous Ni3S4 quantum dots and zeolite imidazole framework nanosheets for enhanced supercapacitor performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Zhang L, Xia H, Liu S, Zhou Y, Zhao Y, Xie W. Nickel-Cobalt Hydroxides with Tunable Thin-Layer Nanosheets for High-Performance Supercapacitor Electrode. NANOSCALE RESEARCH LETTERS 2021; 16:83. [PMID: 33978836 PMCID: PMC8116422 DOI: 10.1186/s11671-021-03543-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Layered double hydroxides as typical supercapacitor electrode materials can exhibit superior energy storage performance if their structures are well regulated. In this work, a simple one-step hydrothermal method is used to prepare diverse nickel-cobalt layered double hydroxides (NiCo-LDHs), in which the different contents of urea are used to regulate the different nanostructures of NiCo-LDHs. The results show that the decrease in urea content can effectively improve the dispersibility, adjust the thickness and optimize the internal pore structures of NiCo-LDHs, thereby enhancing their capacitance performance. When the content of urea is reduced from 0.03 to 0.0075 g under a fixed precursor materials mass ratio of nickel (0.06 g) to cobalt (0.02 g) of 3:1, the prepared sample NiCo-LDH-1 exhibits the thickness of 1.62 nm, and the clear thin-layer nanosheet structures and a large number of surface pores are formed, which is beneficial to the transmission of ions into the electrode material. After being prepared as a supercapacitor electrode, the NiCo-LDH-1 displays an ultra-high specific capacitance of 3982.5 F g-1 under the current density of 1 A g-1 and high capacitance retention above 93.6% after 1000 cycles of charging and discharging at a high current density of 10 A g-1. The excellent electrochemical performance of NiCo-LDH-1 is proved by assembling two-electrode asymmetric supercapacitor with carbon spheres, displaying the specific capacitance of 95 F g-1 at 1 A g-1 with the capacitance retention of 78% over 1000 cycles. The current work offers a facile way to control the nanostructure of NiCo-LDHs, confirms the important affection of urea on enhancing capacitive performance for supercapacitor electrode and provides the high possibility for the development of high-performance supercapacitors.
Collapse
Affiliation(s)
- Luomeng Zhang
- School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Hui Xia
- School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Shaobo Liu
- School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Yishan Zhou
- School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Yuefeng Zhao
- Collaborative Innovation Center of Light Manipulations and Applications, Shangdong Normal University, Jinan, 250358, China
| | - Wenke Xie
- School of Physics and Electronics, Central South University, Changsha, 410083, China.
| |
Collapse
|
12
|
Cao J, Zhou T, Xu Y, Qi Y, Jiang W, Wang W, Sun P, Li A, Zhang Q. Oriented Assembly of Anisotropic Nanosheets into Ultrathin Flowerlike Superstructures for Energy Storage. ACS NANO 2021; 15:2707-2718. [PMID: 33543923 DOI: 10.1021/acsnano.0c08088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The hierarchical ultrathin nanostructures are excellent electrode materials for supercapacitors because of their large surface area and their ability to promote ion and electron transport. Herein, we investigated nine l-amino acids (LAs) as inductive agents to synthesize a series of CoNi-OH/LAs materials for energy storage. With the different amino acids, the assembled CoNi-OH/LAs form a lamellar, flower-shaped, and bulk structure. Among all materials, the ultrathin flowerlike CoNi2-OH/l-asparagine (CoNi2-OH/l-Asn) exhibits an excellent specific capacity of 405.4 mAh g-1 (2608 F g-1) and a 100% retention rate after 3000 cycles. We also assembled asymmetrical supercapacitor CoNi2-OH/l-Asn//N-rGO devices, which demonstrated an energy density of 64.9 Wh kg-1 at 799.9 W kg-1 and superlong cycling stability (82.4% at 10 A g-1) over 5000 cycles.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tianpeng Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunlong Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunbiao Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen 5007, Norway
| | - Ping Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Wang X, Li J, Liu Y, Wang M, Cui H. The key role of microscopic structure and graphene sheet-high homogenization in the high rate capability and cycling stability of Ni-Co LDH. NANOSCALE 2020; 12:23799-23808. [PMID: 33237095 DOI: 10.1039/d0nr07346f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a typical electrode material in Faraday supercapacitors (FSs), Ni(OH)2 has some intrinsic issues such as low electrical conductivity and structural instability, resulting in its low performance. In view of these issues, we design a multifunctional nanostructure, rigid nanosheet-interlaced structure of Ni-Co LDH/graphene to improve the electrical conductivity and structural stability of Ni(OH)2. Under the high shear applied by a high shear mixer (HSM) and the regulation of polyvinylpyrrolidone (PVP), the designed structure is realized. Benefitting from the well-designed structure and improved electrical conductivity of the graphene sheet-high homogenization, Ni-Co LDH/graphene presents the expected performance. It exhibits a high specific capacity of 1020 C g-1 at a low current density of 2.7 A g-1 and excellent high rate performance (637.5 C g-1 at 62.5 A g-1). The asymmetrical supercapacitors (ASCs) assembled with the composite as the positive material show high energy density (86.5 W h kg-1 at a power density of 695.7 W kg-1). Due to the improved structural stability, the ASCs also exhibit high cycling stability (a capacity retention of 97.8% after 10 000 charge-discharge cycles).
Collapse
Affiliation(s)
- Xiaoxiao Wang
- School of Chemistry and Chemical Engineering, Yantai University, 264005 Yantai, China.
| | | | | | | | | |
Collapse
|
14
|
A simple hydrothermal method for the preparation of 3D petal-like Ni(OH)2/g-C3N4/RGO composite with good supercapacitor performance. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Adhikari S, Selvaraj S, Ji SH, Kim DH. Encapsulation of Co 3 O 4 Nanocone Arrays via Ultrathin NiO for Superior Performance Asymmetric Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005414. [PMID: 33150729 DOI: 10.1002/smll.202005414] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Designing of multicomponent transition metal oxide system through the employment of advanced atomic layer deposition (ALD) technique over nanostructures obtained from wet chemical process is a novel approach to construct rational supercapacitor electrodes. Following the strategy, core-shell type NiO/Co3 O4 nanocone array structures are architectured over Ni-foam (NF) substrate. The high-aspect-ratio Co3 O4 nanocones are hydrothermally grown over NF following the precision controlled deposition of shell NiO considering Co3 O4 nanocone as host. NiO thickness of 5 nm exhibits the highest specific capacity of 1242 C g-1 (2760 F g-1 ) at current density 2 A g-1 , which is greater than pristine Co3 O4 @NF (1045.8 C g-1 or 2324 F g-1 ). The rate capability with 5 nm NiO/Co3 O4 @NF nanocone structures is about 77% whereas Co3 O4 @NF retains 46 % of capability at 10 A g-1 . The ultrathin ALD 5 nm NiO accelerates both rate capability and 95.5% cyclic stability after 12 000 charge-discharge cycles. An asymmetric device fabricated between 5 nm NiO/Co3 O4 @NF (positive) || activated carbon (negative) achieves an energy density of 81.45 Wh kg-1 (4268 W kg-1 ) with good cycling device stability. Additionally, LEDs can be energized by two ASC device in series. This work opens the path in both advanced electrode material and surface modification of earth-abundant systems for efficient and real-time supercapacitor applications.
Collapse
Affiliation(s)
- Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Seenivasan Selvaraj
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Su-Hyeon Ji
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
16
|
Enhanced battery-type supercapacitor performance based on composite structure of nickel cobaltite and cadmium sulfide. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Three-dimensional coral-like Ni2P-ACC nanostructure as binder-free electrode for greatly improved supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Siwatch P, Sharma K, Tripathi S. Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|