1
|
Qin Y, Wang H, Zhou J, Li R, Jiang C, Wan Y, Wang X, Chen Z, Wang X, Liu Y, Guo B, Wang D. Binding FSI - to Construct a Self-Healing SEI Film for Li-Metal Batteries by In situ Crosslinking Vinyl Ionic Liquid. Angew Chem Int Ed Engl 2024; 63:e202402456. [PMID: 38415324 DOI: 10.1002/anie.202402456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
The solid electrolyte interphase (SEI) membrane on the Li metal anode tends to breakdown and undergo reconstruction during operation, causing Li metal batteries to experience accelerated decay. Notably, an SEI membrane with self-healing characteristics can help considerably in stabilizing the Li-electrolyte interface; however, uniformly fixing the repairing agent onto the anode remains a challenging task. By leveraging the noteworthy film-forming attributes of bis(fluorosulfonyl)imide (FSI-) anions and the photopolymerization property of the vinyl group, the ionic liquid 1-vinyl-3-methylimidazolium bis(fluorosulfonyl)imide (VMI-FSI) was crosslinked with polyethylene oxide (PEO) in this study to form a self-healing film fixing FSI- groups as the repairing agent. When they encounter lithium metal, the FSI- groups are chemically decomposed into LiF & Li3N, which assist forming SEI membrane on lithium sheet and repairing SEI membrane in the cracks lacerated by lithium dendrite. Furthermore, the FSI- anions exchanged from film are electrochemically decomposed to generate inorganic salts to strengthen the SEI membrane. Benefiting from the self-healing behavior of the film, Li/LiCoO2 cells with the loading of 16.3 mg cm-2 exhibit the initial discharge capacities of 183.0 mAh ⋅ g-1 and are stably operated for 500 cycles with the retention rates of 81.4 % and the average coulombic efficiency of 99.97 %, operated between 3.0-4.5 V vs. Li+/Li. This study presents a new design approach for self-healing Li metal anodes and durable lithium metal battery.
Collapse
Affiliation(s)
- Yinping Qin
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, China
- Materials Genome Institute, Shanghai University, Shanghai, 99 Shangda Road, Baoshan District, Shanghai, China
| | - Hefeng Wang
- Materials Genome Institute, Shanghai University, Shanghai, 99 Shangda Road, Baoshan District, Shanghai, China
| | - Jingjing Zhou
- Materials Genome Institute, Shanghai University, Shanghai, 99 Shangda Road, Baoshan District, Shanghai, China
| | - Ruyi Li
- Materials Genome Institute, Shanghai University, Shanghai, 99 Shangda Road, Baoshan District, Shanghai, China
| | - Chun Jiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, China
| | - Yi Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, China
| | - Xiaoyi Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, China
| | - Zhenlian Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, China
| | - Xiaolei Wang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, China
- Materials Genome Institute, Shanghai University, Shanghai, 99 Shangda Road, Baoshan District, Shanghai, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, N6A 5B8, Canada
| | - Bingkun Guo
- Materials Genome Institute, Shanghai University, Shanghai, 99 Shangda Road, Baoshan District, Shanghai, China
| | - Deyu Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, China
| |
Collapse
|
2
|
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
3
|
Liu Y, Zeng Q, Li Z, Chen A, Guan J, Wang H, Wang S, Zhang L. Recent Development in Topological Polymer Electrolytes for Rechargeable Lithium Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206978. [PMID: 36999829 DOI: 10.1002/advs.202206978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Indexed: 05/27/2023]
Abstract
Solid polymer electrolytes (SPEs) are still being considered as a candidate to replace liquid electrolytes for high-safety and flexible lithium batteries due to their superiorities including light-weight, good flexibility, and shape versatility. However, inefficient ion transportation of linear polymer electrolytes is still the biggest challenge. To improve ion transport capacity, developing novel polymer electrolytes are supposed to be an effective strategy. Nonlinear topological structures such as hyperbranched, star-shaped, comb-like, and brush-like types have highly branched features. Compared with linear polymer electrolytes, topological polymer electrolytes possess more functional groups, lower crystallization, glass transition temperature, and better solubility. Especially, a large number of functional groups are beneficial to dissociation of lithium salt for improving the ion conductivity. Furthermore, topological polymers have strong design ability to meet the requirements of comprehensive performances of SPEs. In this review, the recent development in topological polymer electrolytes is summarized and their design thought is analyzed. Outlooks are also provided for the development of future SPEs. It is expected that this review can raise a strong interest in the structural design of advanced polymer electrolyte, which can give inspirations for future research on novel SPEs and promote the development of next-generation high-safety flexible energy storage devices.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghui Zeng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfeng Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anqi Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiazhu Guan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Wang
- State Key Laboratory of Organic Electronics & Information Displays (SKLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Liaoyun Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Fang Z, Deng Q, Zhou Y, Fu X, Yi J, Wu L, Dai Q, Yang Y. Pendant Length-Dependent Electrochemical Performances for Conjugated Organic Polymers as Solid-State Polymer Electrolytes in Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5283-5292. [PMID: 36691802 DOI: 10.1021/acsami.2c20127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of solid-state polymer electrolytes (SPEs) has been plagued by poor ionic conductivity, low ionic transference number, and limited electrochemical potential window. The exploitation of ionized SPEs is a feasible avenue to solve this problem. Herein, conjugated organic polymers (COPs) with excellent designability and rich pore structures have been selected as platforms for exploration. Three cationic COPs with different chain lengths of quaternary ammonium salts (CbzT@Cx, x = 4, 6, 9) are designed and applied to SPEs for the first time. Meanwhile, the effects of chain lengths on their electrochemical performances are compared. Especially, CbzT@C9 shows the most attractive electrochemical performance due to its high specific surface area of 212.3 m2 g-1. The larger specific surface area allows more exposure of the long-chain quaternary ammonium cation groups, which is more favorable for the dissociation of lithium salts. Moreover, the flexible long-chain structure increases the compatibility with poly(ethylene oxide) (PEO) and reduces the crystallinity of PEO to some extent. The richer pore structure can accommodate more PEO, further disrupting the crystallinity of PEO and creating more channels for the ether-oxygen chain to transport lithium ions. At 60 °C, the SPE (CbzTM@C9) presents an excellent ionic conductivity (σ) of 8.00 × 10-4 S cm-1. CbzTM@C9 has a lithium-ion transference number (tLi+) of 0.48. Thus, the assembled Li/CbzTM@C9/LiFePO4 battery provides a good discharge capacity of 158.8 mAh g-1 at 0.1C. After 70 cycles, the capacity retention rate is 93.8% with a Coulombic efficiency of 98%. The excellent flexibility brings stable power supply capability under various bending angles to the assembled Li/CbzTM@C9/LiFePO4 soft-packed battery. The project uses conjugated organic polymers in SPEs and creates an avenue to develop flexible energy storage equipment.
Collapse
Affiliation(s)
- Zhao Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Yang Zhou
- The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing401120, P. R. China
| | - Xiaolong Fu
- Xi'an Modern Chemistry Research Institute, Xi'an710065, Shannxi, P. R. China
| | - Jiacheng Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Lizhi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Qingyang Dai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| |
Collapse
|
5
|
Kim M, Pham TC, Yang H, Park SH, Lee S. Syntheses and photovoltaic properties of polythiophene‐based copolymers as polymer matrix of quasi‐solid‐state electrolytes. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mi‐Ra Kim
- Department of Chemistry Pukyong National University Busan Korea
| | - Thanh Chung Pham
- Division of Chemical Engineering and Materials Science Ewha Womans University Seoul Korea
| | - Hyun‐Seock Yang
- Department of Physics Pukyong National University Busan Korea
| | - Sung Heum Park
- Department of Physics Pukyong National University Busan Korea
| | - Songyi Lee
- Department of Chemistry Pukyong National University Busan Korea
- Industry 4.0 Convergence Bionics Engineering Pukyong National University Busan Korea
| |
Collapse
|
6
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
7
|
Zhao B, Ma L, Xie H, Wu K, Wang X, Huang S, Zhu X, Zhang X, Tu Y, Chen J. Self-adaptive multiblock-copolymer-based hybrid solid-state electrolyte for safe and stable lithium-metal battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zhang Q, Liu K, Liu K, Zhou L, Ma C, Du Y. Imidazole containing solid polymer electrolyte for lithium ion conduction and the effects of two lithium salts. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Woo HS, Son H, Min JY, Rhee J, Lee HT, Kim DW. Ionic liquid-based gel polymer electrolyte containing zwitterion for lithium-oxygen batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Feng J, Ao X, Lei Z, Wang J, Deng Y, Wang C. Hollow nanotubular clay composited comb-like methoxy poly(ethylene glycol) acrylate polymer as solid polymer electrolyte for lithium metal batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135995] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Wu Z, Xie Z, Yoshida A, Wang J, Yu T, Wang Z, Hao X, Abudula A, Guan G. Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. J Colloid Interface Sci 2020; 565:110-118. [PMID: 31935584 DOI: 10.1016/j.jcis.2020.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022]
Abstract
Solid-state electrolytes with high ionic conductivity, large electrochemical window, and excellent stability with lithium electrode are needed for high-energy solid-state lithium batteries. In this work, a novel polyethylene oxide (PEO)-Lithium bis(trifluoromethylsulphonyl)imide (LiTFSI)-nanocomposite-based polymer electrolyte was prepared by using nickel phosphate (VSB-5) nanorods as the filler. The ionic conductivity of the obtained PEO-LiTFSI-3%VSB-5 solid polymer electrolyte was found to be as high as 4.83 × 10-5 S·cm-1 at 30 °C and electrochemically stable up to about 4.13 V versus Li/Li+. The enhanced ionic conductivity was attributed to the reduced crystallinity of the PEO and the interaction between VSB and 5 and PEO-LiTFSI. In addition, the solid polymer electrolyte exhibited improved compatibility to the lithium metal anode with excellent suppression of lithium dendrites. The assembled LiFePO4/Li battery with the PEO-LiTFSI-3%VSB-5 solid polymer electrolyte showed better rate performance and higher cyclic stability than the PEO-LiTFSI electrolyte. It is demonstrated that this new solid polymer hybrid should be a promising electrolyte applied in solid state batteries with lithium metal electrode.
Collapse
Affiliation(s)
- Zhijun Wu
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Zhengkun Xie
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Akihiro Yoshida
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan; Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan
| | - Jing Wang
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Tao Yu
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Zhongde Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Guoqing Guan
- Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan; Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan.
| |
Collapse
|
12
|
Zhou Y, Wang B, Yang Y, Li R, Wang Y, Zhou N, Shen J, Zhou Y. Dicationic tetraalkylammonium-based polymeric ionic liquid with star and four-arm topologies as advanced solid-state electrolyte for lithium metal battery. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|