1
|
Gelija D, Loka C, Goddati M, Bak NH, Lee J, Kim MD. Integration of Ag Plasmonic Metal and WO 3/InGaN Heterostructure for Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37452743 DOI: 10.1021/acsami.3c05141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In this study, a Ag/WO3/InGaN hybrid heterostructure was successfully developed by sputtering and molecular beam epitaxy techniques, to obtain unique Ag nanospheres adorned with cauliflower-like WO3 nanostructure over the InGaN nanorods (NRs). Exploiting the localized surface plasmon resonance of Ag, the Ag/WO3/InGaN heterostructure exhibited superior photoabsorption ability in the visible region (400-700 nm) of the solar spectrum, with a surface plasmon resonance band centered around 440 nm. Comprehensive analysis through photoluminescence spectroscopy, photocurrent measurements, and electrochemical impedance spectroscopy revealed that the Ag/WO3/InGaN hybrid heterostructure significantly enhances the charge carrier separation and transfer kinetics leading to improved overall photoelectrochemical (PEC) performance. The photocurrent density of the Ag/WO3/InGaN photoanode is 1.17 mA/cm2, which is about 2.72 times higher than that of pure InGaN NRs under visible light irradiation. The photoanode exhibited excellent stability for about 12 h. From the study, it has been found that the maximum applied bias photon-to-current efficiency (ABPE) is ∼1.67% at the applied bias of 0.6 V. The improved PEC water splitting efficiency of the Ag/WO3/InGaN photoanode is attributed to the synergistic effects of localized surface plasmon resonance (LSPR), efficient charge carrier separation and transport, and the presence of a Schottky junction. Consequently, the plasmonic metal-assisted heterojunction-based semiconductor Ag/WO3/InGaN demonstrates immense potential for practical applications in photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Devarajulu Gelija
- Institute of Quantum Systems (IQS), Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chadrasekhar Loka
- Department of Advanced Materials Engineering & Smart Natural Space Research Centre, Kongju National University, Cheonan 31080, South Korea
| | - Mahendra Goddati
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Na-Hyun Bak
- Department of Physics, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon-Deock Kim
- Institute of Quantum Systems (IQS), Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Physics, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Yu H, Wang M, Yan J, Dang H, Zhu H, Liu Y, Wen M, Li G, Wu L. Complete mineralization of phenolic compounds in visible-light-driven photocatalytic ozonation with single-crystal WO 3 nanosheets: Performance and mechanism investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128811. [PMID: 35381509 DOI: 10.1016/j.jhazmat.2022.128811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Complete mineralization of phenolic compounds into CO2 and H2O is desirable for removing them in wastewater, but it is challenging due to the generated recalcitrant intermediates, which requires highly effective advanced oxidation process with proper catalysts. Herein, we found that single-crystal WO3 nanosheets (NSs)-based photocatalytic ozonation (PCO) can realize complete mineralization of phenols (phenol and 2-chlorophenol) under visible light irradiation. Almost 100% mineralization ratio of phenols was achieved through WO3 NSs-based PCO system within short time. By comparing their performances with those of polycrystalline WO3 nanoparticles, detecting and analyzing the intermediates, identifying the dominant radicals and conducting some electrochemical characterizations, the origin of superior catalytic activity of WO3 NSs was uncovered, the mineralization pathways and the overall mechanism were proposed. The excellent PCO performance of WO3 NSs was contributed to their nanosheet morphology with single-crystal microstructure and good dispersion, which can provide continuous interior channels for the photogenerated charge transport from the bulk to surface of WO3 NSs and enough active sites for the surface reactions triggered by these charges. This work puts forwards new ideas to design highly active photocatalysts for PCO and helps deepen understanding of the catalytic mechanism of PCO.
Collapse
Affiliation(s)
- Haidong Yu
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mingxi Wang
- Key Laboratory for Biomass-based Environment & Energy Materials in Petroleum & Chemical Industries, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiabao Yan
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hui Dang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hui Zhu
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuejin Liu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Meicheng Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guisheng Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ling Wu
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
3
|
Xing Z, Zhang X, Yang W, Li H, Zhao Y, Wei T, Bian L, Chen G, Qin H, Lu S. Improved photocatalytic activity and stability of InGaN quantum dots/C 3N 4heterojunction photoelectrode for CO 2reduction and hydrogen production. NANOTECHNOLOGY 2021; 32:505705. [PMID: 34492642 DOI: 10.1088/1361-6528/ac2450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic conversion of CO2to produce fuel is considered a promising approach to reduce CO2emissions and tackle energy crisis. GaN-based materials have been studied for CO2reduction because of their excellent optical properties and band structure. However, low photocatalytic activity and severe photocorrosion of GaN-based photoelectrode greatly limit their applications. In this work, photocatalytic activity was improved by adopting InGaN quantum dots (QDs) combined with C3N4nano-sheets as photoanode, and thus the efficiency of CO2reduction and the selectivity of hydrogen production were increased significantly. In addition, the photoelectron-chemical corrosion of photoelectrodes has been apparently controlled. InGaN QDs/C3N4has the highest CO and H2productions rates of 14.69μmol mol-1h-1and 140μmol mol-1h-1which were 2.2 times and 14.5 times than that of InGaN film photoelectrode, respectively. The enhancement of photocatalytic activity is attributed to C3N4modification and a large electric dipole forming on the surface of InGaN QDs, which facilitate the separation and transfer of photo-generated carriers and thus promote CO2reduction reaction. This work provides a promising strategy for the development of GaN-based photoanodes with superior stability and efficiency.
Collapse
Affiliation(s)
- Zhiwei Xing
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Xue Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Wenxian Yang
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Huan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Yukun Zhao
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Tieshi Wei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Lifeng Bian
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Guifeng Chen
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Hua Qin
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Shulong Lu
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
4
|
Lin J, Zhang Z, Chai J, Cao B, Deng X, Wang W, Liu X, Li G. Highly Efficient InGaN Nanorods Photoelectrode by Constructing Z-scheme Charge Transfer System for Unbiased Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006666. [PMID: 33350056 DOI: 10.1002/smll.202006666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Unbiased photoelectrochemical water splitting for the promising InGaN nanorods photoelectrode is highly desirable, but it is practically hindered by the serious recombination of charge carrier in bulk and surface of InGaN nanorods. Herein, an unbiased Z-scheme InGaN nanorods/Cu2 O nanoparticles heterostructured system with boosted interfacial charge transfer is constructed for the first time. The introduced Cu2 O nanoparticles pose double-sided effect on photoelectrochemical (PEC) performance of InGaN nanorods, which enables a robust hybrid structure and induces weakened light absorption capability simultaneously. As a result, the optimized InGaN/Cu2 O-1.5C photoelectrode with the uniform morphology exhibits an enhanced photocurrent density of ≈170 µA cm-2 at 0 V versus Pt, with 8.5-fold enhancement compared with pure InGaN nanorods. Comprehensive investigations into experimental results and theoretical calculations reveal that the electrons accumulation and holes depletion of Cu2 O facilitate to form a typical Z-scheme band alignment, thus providing a large photovoltage to drive unbiased water splitting and enhancing the stability of Cu2 O. This work provides a novel and facile strategy to achieve InGaN nanorods and other catalyst-based PEC water splitting without external bias, and to relieve the bottlenecks of charge transfer dynamics at the electrode bulk and electrode/electrolyte interface by constructing Z-scheme heterostructure.
Collapse
Affiliation(s)
- Jing Lin
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhijie Zhang
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jixing Chai
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ben Cao
- Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xi Deng
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xingjiang Liu
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
InGaN Nanorods Decorated with Au Nanoparticles for Enhanced Water Splitting Based on Surface Plasmon Resonance Effects. NANOMATERIALS 2020; 10:nano10050912. [PMID: 32397381 PMCID: PMC7279278 DOI: 10.3390/nano10050912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022]
Abstract
Photoelectrochemical (PEC) water splitting has great application potential in converting solar energy into hydrogen energy. However, what stands in the way of the practical application of this technology is the low conversion efficiency, which can be promoted by optimizing the material structure and device design for surface functionalization. In this work, we deposited gold nanoparticles (Au NPs) with different loading densities on the surface of InGaN nanorod (NR) arrays through a chemical solvent route to obtain a composite PEC water splitting system. Enhanced photocatalytic activity, which can be demonstrated by the surface plasmon resonance (SPR) effect induced by Au NPs, occurred and was further confirmed to be associated with the different loading densities of Au NPs. These discoveries use solar water splitting as a platform and provide ideas for exploring the mechanism of SPR enhancement.
Collapse
|