1
|
Chen X, Wu Y, Holze R. Ag(e)ing and Degradation of Supercapacitors: Causes, Mechanisms, Models and Countermeasures. Molecules 2023; 28:5028. [PMID: 37446693 DOI: 10.3390/molecules28135028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The most prominent and highly visible advantage attributed to supercapacitors of any type and application, beyond their most notable feature of high current capability, is their high stability in terms of lifetime, number of possible charge/discharge cycles or other stability-related properties. Unfortunately, actual devices show more or less pronounced deterioration of performance parameters during time and use. Causes for this in the material and component levels, as well as on the device level, have only been addressed and discussed infrequently in published reports. The present review attempts a complete coverage on these levels; it adds in modelling approaches and provides suggestions for slowing down ag(e)ing and degradation.
Collapse
Affiliation(s)
- Xuecheng Chen
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Yuping Wu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Rudolf Holze
- Chemnitz University of Technology, D-09107 Chemnitz, Germany
- Institute of Chemistry, Saint Petersburg State University, St. Petersburg 199034, Russia
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Lin Y, Ta L, Meng J, Song Y, Liu XX. Electrodepositing amorphous molybdenum oxides for aqueous NH 4+ storage. Chem Commun (Camb) 2023; 59:1481-1484. [PMID: 36655709 DOI: 10.1039/d2cc06450b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The limited choice of anode materials always challenges the development of high performance aqueous ammonium-ion batteries (AAIBs). Herein, we fabricate amorphous molybdenum oxide (MoOx) materials and study the NH4+ storage performances. The results indicate that the optimized electrode exhibits high gravimetric/areal capacities of 175 mA h g-1/1.30 mA h cm-2, outperforming state-of-the-art anode materials for AAIBs. Our findings indicate that the valence state of Mo and the Mo-O-H content in MoOx synergistically control the NH4+ storage performances, offering new understanding for rational design of MoOx materials for energy storage applications.
Collapse
Affiliation(s)
- Yulai Lin
- Department of Chemistry, Northeastern University, Shenyang, 110819, China.
| | - Lintuoya Ta
- Department of Chemistry, Northeastern University, Shenyang, 110819, China.
| | - Jianming Meng
- Department of Chemistry, Northeastern University, Shenyang, 110819, China.
| | - Yu Song
- Department of Chemistry, Northeastern University, Shenyang, 110819, China.
| | - Xiao-Xia Liu
- Department of Chemistry, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
3
|
Liu H, Cai X, Zhi X, Di S, Zhai B, Li H, Wang S, Li L. An Amorphous Anode for Proton Battery. NANO-MICRO LETTERS 2022; 15:24. [PMID: 36583812 PMCID: PMC9803796 DOI: 10.1007/s40820-022-00987-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Developing advanced electrode materials is crucial for improving the electrochemical performances of proton batteries. Currently, the anodes are primarily crystalline materials which suffer from inferior cyclic stability and high electrode potential. Herein, we propose amorphous electrode materials for proton batteries by using a general ion-exchange protocol to introduce multivalent metal cations for activating the host material. Taking Al3+ as an example, theoretical and experimental analysis demonstrates electrostatic interaction between metal cations and lattice oxygen, which is the primary barrier for direct introduction of the multivalent cations, is effectively weakened through ion exchange between Al3+ and pre-intercalated K+. The as-prepared Al-MoOx anode therefore delivered a remarkable capacity and outstanding cycling stability that outperforms most of the state-of-the-art counterparts. The assembled full cell also achieved a high voltage of 1.37 V. This work opens up new opportunities for developing high-performance electrodes of proton batteries by introducing amorphous materials.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning, People's Republic of China
| | - Xiang Cai
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning, People's Republic of China
| | - Xiaojuan Zhi
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning, People's Republic of China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, Liaoning, People's Republic of China
| | - Shuanlong Di
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning, People's Republic of China
| | - Boyin Zhai
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning, People's Republic of China
| | - Hongguan Li
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, Liaoning, People's Republic of China
- School of Metallurgy, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Shulan Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning, People's Republic of China
| | - Li Li
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, Liaoning, People's Republic of China.
- School of Metallurgy, Northeastern University, Shenyang, 110819, People's Republic of China.
| |
Collapse
|
4
|
The phenomenon of increasing capacitance induced by 1T/2H-MoS2 surface modification with Pt particles – Influence on composition and energy storage mechanism. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Zhan J, Li G, Gu Q, Wu H, Su L, Wang L. Porous Carbon Nanosheets Armoring 3D Current Collectors toward Ultrahigh Mass Loading for High-Energy-Density All-Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52519-52529. [PMID: 34719234 DOI: 10.1021/acsami.1c12953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The in situ growth of active materials on 3D current collectors (such as Ni foams) presents facile and efficient access to high-performance supercapacitors. However, the low surface area of current collectors limits the mass loading, microstructure, and capacitive performance of active materials thereon. Herein, we develop a novel surface modification with hierarchical N-rich carbon nanosheets on Ni foams via a simple sol-gel method. At the same time, its favorable effects on mass loading and utilization are demonstrated using NiCoMn-carbonate hydroxide (NCM) as a model active material. Specifically, the carbon modification greatly boosts the current collector's specific surface area and enables the growth of dense NCM nanoneedles with controllable mass loading ranging from 5.2 to 23.1 mg cm-2. Meanwhile, the correlation between mass loading and utilization is systematically studied, which shows the well-maintained energy storage efficiency due to the conducive surface modification. As a result, excellent performance with the ultrahigh area-specific capacity of 19.36 F cm-2 at 2 mA cm-2 in the three-electrode configuration and remarkable area-specific energy density of 1352 μW h cm-2 in the solid-state asymmetric device can be achieved, demonstrating a prospective pathway toward facile and effective current collector designs for high-energy/power-density supercapacitors.
Collapse
Affiliation(s)
- Jing Zhan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gaoran Li
- College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qihang Gu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liwei Su
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianbang Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Liu Q, Zhang H, Yang F, Geng H, Liu X, Yu Y, Lu X. Enhancing Li-Ion Affinity of Molybdenum Dioxide/Carbon Fabric to Achieve High Pseudocapacitance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104178. [PMID: 34636139 DOI: 10.1002/smll.202104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Indexed: 06/13/2023]
Abstract
High-energy electrodes at high mass loadings (usually >8.0 mg cm-2 ) are desired for aqueous pseudocapacitors. Yet, how to overcome the thickness-dependent resistance increase of ion/electron transport in pseudocapacitive materials is still challenging. Herein, a high-performance electrode (denoted as AMC) adapted to high mass loading is achieved by promoting the Li-ion affinity of 3D MoO2 /carbon fabric. The experimental results and corresponding computational results reveal that the oxygen-activated surface of AMC, combined with the wettability and conductivity superiority of 3D graphite network, significantly facilitates the Li-ion adsorption and diffusion at the electrode/electrolyte interface, even at large thicknesses. Consequently, even at a high mass loading up to 8.1 mg cm-2 , the AMC electrode also displays an impressive specific capacity (567.5 C g-1 at 2.5 A g-1 ), substantially superior to most advanced pseudocapacitive electrodes. The strategy of boosting energy characteristic by enhancing the affinity of charge carriers is applicable to other pseudocapacitive electrodes.
Collapse
Affiliation(s)
- Qiyu Liu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P. R. China
- The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Haozhe Zhang
- The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Fan Yang
- The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P. R. China
| | - Xiaoqing Liu
- The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yanxia Yu
- The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xihong Lu
- The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
- School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, P. R. China
| |
Collapse
|
7
|
|
8
|
Cai X, Sang XG, Song Y, Guo D, Liu XX, Sun X. Activating the Highly Reversible Mo 4+/Mo 5+ Redox Couple in Amorphous Molybdenum Oxide for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48565-48571. [PMID: 33048525 DOI: 10.1021/acsami.0c13692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molybdenum oxide provides high theoretical capacity, but the moderate charge transfer kinetics and cycle life have limited the applications for capacitive energy storage. Herein, the electrochemical performance of molybdenum oxide is modified by tuning the active redox couple through an electrochemical activation process. The activated electrode K-MoOx with a 10 mg cm-2 loading shows excellent pseudocapacitive behavior within the large potential range of -1.2-0 V and delivers 313 F g-1 capacitance at 5 mA cm-2. It also presents an ultrastable cycle life, with a 98% capacitance retention after 10,000 cycles. The activation process involves the insertion of K+ into MoOx, which modifies the Mo electronic structure and introduces Mo4+ sites according to X-ray photoelectron spectroscopy. As a result, the charge storage redox couple shifts from Mo5+/Mo6+ to Mo4+/Mo5+, with the latter delivering higher electrochemical activity due to improved conductivity. Electrochemical impedance spectroscopy also suggests faster ion diffusions and thus higher power capability in K-MoOx, resulting in the enhanced performance. A 2.4 V asymmetric supercapacitor is assembled using K-MoOx as the anode with a MnOx cathode. The work demonstrates a feasible and facile strategy to promote the pseudocapacitive behavior of metal oxide materials.
Collapse
Affiliation(s)
- Xiang Cai
- Department of Chemistry, Northeastern University, Shenyang 110819, China
| | - Xiao-Guang Sang
- Department of Chemistry, Northeastern University, Shenyang 110819, China
| | - Yu Song
- Department of Chemistry, Northeastern University, Shenyang 110819, China
| | - Di Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, China
| | - Xiao-Xia Liu
- Department of Chemistry, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China
| | - Xiaoqi Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
Lv H, Pan Q, Song Y, Liu XX, Liu T. A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. NANO-MICRO LETTERS 2020; 12:118. [PMID: 34138149 PMCID: PMC7770725 DOI: 10.1007/s40820-020-00451-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/22/2020] [Indexed: 05/14/2023]
Abstract
The article reviews the recent progress of electrochemical techniques on synthesizing nano-/microstructures as supercapacitor electrodes. With a history of more than a century, electrochemical techniques have evolved from metal plating since their inception to versatile synthesis tools for electrochemically active materials of diverse morphologies, compositions, and functions. The review begins with tutorials on the operating mechanisms of five commonly used electrochemical techniques, including cyclic voltammetry, potentiostatic deposition, galvanostatic deposition, pulse deposition, and electrophoretic deposition, followed by thorough surveys of the nano-/microstructured materials synthesized electrochemically. Specifically, representative synthesis mechanisms and the state-of-the-art electrochemical performances of exfoliated graphene, conducting polymers, metal oxides, metal sulfides, and their composites are surveyed. The article concludes with summaries of the unique merits, potential challenges, and associated opportunities of electrochemical synthesis techniques for electrode materials in supercapacitors.
Collapse
Affiliation(s)
- Huizhen Lv
- Department of Chemistry, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Qing Pan
- Department of Chemistry, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Yu Song
- Department of Chemistry, Northeastern University, Shenyang, 110819, People's Republic of China.
| | - Xiao-Xia Liu
- Department of Chemistry, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Tianyu Liu
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|