1
|
Wang B, Yang F, Feng L. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302866. [PMID: 37434101 DOI: 10.1002/smll.202302866] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Water splitting is a promising technique in the sustainable "green hydrogen" generation to meet energy demands of modern society. Its industrial application is heavily dependent on the development of novel catalysts with high performance and low cost for hydrogen evolution reaction (HER). As a typical non-precious metal, cobalt-based catalysts have gained tremendous attention in recent years and shown a great prospect of commercialization. However, the complexity of the composition and structure of newly-developed Co-based catalysts make it urgent to comprehensively retrospect and summarize their advance and design strategies. Hence, in this review, the reaction mechanism of HER is first introduced and the possible role of the Co component during electrocatalysis is discussed. Then, various design strategies that could effectively enhance the intrinsic activity are summarized, including surface vacancy engineering, heteroatom doping, phase engineering, facet regulation, heterostructure construction, and the support effect. The recent progress of the advanced Co-based HER electrocatalysts is discussed, emphasizing that the application of the above design strategies can significantly improve performance by regulating the electronic structure and optimizing the binding energy to the crucial intermediates. At last, the prospects and challenges of Co-based catalysts are shown according to the viewpoint from fundamental explorations to industrial applications.
Collapse
Affiliation(s)
- Bin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| |
Collapse
|
2
|
Xu X, Mo Q, Zheng K, Xu Z, Cai H. Multifunctional Ni 3S 2@NF-based electrocatalysts for efficient and durable electrocatalytic water splitting. Dalton Trans 2023; 52:12378-12389. [PMID: 37593924 DOI: 10.1039/d3dt02035e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Transition-metal sulfides (TMSs) have indeed drawn dramatic interest as a potential species of electrocatalysts by virtue of their unique structural features. However, their poor stability and inherent activity have impeded their use in electrocatalytic water splitting. Here, we provide a rational design of a hierarchical nanostructured electrocatalyst containing CeOx-decorated NiCo-layered double hydroxide (LDH) coupled with Ni3S2 protrusions formed on a Ni foam (NF). Specifically, the as-prepared electrocatalyst, denoted as Ni2Co1 LDH-CeOx/Ni3S2@NF, presents only 250 and 300 mV overpotential at ±100 mA cm-2, respectively, along with the Tafel slope values of 92 and 52 mV dec-1, as well remarkable long-term life for water splitting in an alkaline electrolyte. Based on systematic experiments and theoretical analysis, the superior electrocatalytic property in terms of Ni2Co1 LDH-CeOx/Ni3S2@NF can be imputed to the following reasons: the porous framework of Ni3S2@NF provides a largely surface area and high conductivity; the NiCo LDH nanosheets provide enriched active sites and favorable adsorption ability; the oxygen-vacancy-rich CeOx optimizes the electronic configuration. Overall, these factors work synergistically to expedite the catalytic kinetics of splitting water. Our work concentrates on a rational interface to devise efficient, multifunctional, and serviceable electrocatalysts for future applications.
Collapse
Affiliation(s)
- Xiaomei Xu
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Qiaoling Mo
- Center of analysis and testing, Nanchang University, 235 Nanjing east road, Nanchang 330029, China.
| | - Kuangqi Zheng
- School of Future Technology, Nanchang University, 999 Xue fu Avenue, Nanchang 330031, China
| | - Zhaodi Xu
- Center of analysis and testing, Nanchang University, 235 Nanjing east road, Nanchang 330029, China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| |
Collapse
|
3
|
Xiao B, Wu G, Wang T, Wei Z, Xie Z, Sui Y, Qi J, Wei F, Zhang X, Tang LB, Zheng JC. Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2792-2803. [PMID: 36606677 DOI: 10.1021/acsami.2c12374] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High-entropy oxide (HEO) is an emerging type of anode material for lithium-ion batteries with excellent properties, where high-concentration oxygen vacancies can effectively enhance the diffusion coefficient of lithium ions. In this study, Ni-free spinel-type HEOs ((FeCoCrMnZn)3O4 and (FeCoCrMnMg)3O4) were prepared via ball milling, and the effects of zinc and magnesium on the concentration of oxygen vacancy (OV), lithium-ion diffusion coefficient (DLi+), and electrochemical performance of HEOs were investigated. Ab initio calculations show that the addition of zinc narrows down the band gap and thus improves the electrical conductivity. X-ray photoelectron spectroscopy (XPS) results show that (FeCoCrMnZn)3O4 (42.7%) and (FeCoCrMnMg)3O4 (42.5%) have high OV concentration. During charge/discharge, the OV concentration of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4. The galvanostatic intermittent titration technique (GITT) results show that the DLi+ value of (FeCoCrMnZn)3O4 is higher than that of (FeCoCrMnMg)3O4 during charge and discharge. All of that can improve its specific discharge capacity and enhance its cycle stability. (FeCoCrMnZn)3O4 achieved a discharge capacity of 828.6 mAh g-1 at 2.0 A g-1 after 2000 cycles. This work provides a deep understanding of the structure and performance of HEO.
Collapse
Affiliation(s)
- Bin Xiao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, P. R. China
| | - Gang Wu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, P. R. China
| | - Tongde Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, P. R. China
| | - Zhengang Wei
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, P. R. China
| | - Zelin Xie
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, P. R. China
| | - Yanwei Sui
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, P. R. China
| | - Jiqiu Qi
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, P. R. China
| | - Fuxiang Wei
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, P. R. China
| | - Xiahui Zhang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington99164, United States
| | - Lin-Bo Tang
- School of Metallurgy and Environment, Central South University, Changsha410083, P. R. China
| | - Jun-Chao Zheng
- School of Metallurgy and Environment, Central South University, Changsha410083, P. R. China
| |
Collapse
|
4
|
Olowoyo JO, Kriek RJ. Recent Progress on Bimetallic-Based Spinels as Electrocatalysts for the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203125. [PMID: 35996806 DOI: 10.1002/smll.202203125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalytic water splitting is a promising and viable technology to produce clean, sustainable, and storable hydrogen as an energy carrier. However, to meet the ever-increasing global energy demand, it is imperative to develop high-performance non-precious metal-based electrocatalysts for the oxygen evolution reaction (OER), as the OER is considered the bottleneck for electrocatalytic water splitting. Spinels, in particular, are considered promising OER electrocatalysts due to their unique properties, precise structures, and compositions. Herein, the recent progress on the application of bimetallic-based spinels (AFe2 O4 , ACo2 O4 , and AMn2 O4 ; where A = Ni, Co, Cu, Mn, and Zn) as electrocatalysts for the OER is presented. The fundamental concepts of the OER are highlighted after which the family of spinels, their general formula, and classifications are introduced. This is followed by an overview of the various classifications of bimetallic-based spinels and their recent developments and applications as OER electrocatalysts, with special emphasis on enhancing strategies that have been formulated to improve the OER performance of these spinels. In conclusion, this review summarizes all studies mentioned therein and provides the challenges and future perspectives for bimetallic-based spinel OER electrocatalysts.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Electrochemistry for Energy & Environment Group, Research Focus Area: Chemical Resource Beneficiation (CRB), Private Bag X6001, North-West University, Potchefstroom, 2520, South Africa
| | - Roelof J Kriek
- Electrochemistry for Energy & Environment Group, Research Focus Area: Chemical Resource Beneficiation (CRB), Private Bag X6001, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
5
|
Badreldin A, Youssef K, El Ghenymy A, Wubulikasimu Y, Ghouri ZK, Elsaid K, Kumar D, Abdel-Wahab A. Solution Combustion Synthesis of Novel S,B-Codoped CoFe Oxyhydroxides for the Oxygen Evolution Reaction in Saline Water. ACS OMEGA 2022; 7:5521-5536. [PMID: 35187367 PMCID: PMC8851632 DOI: 10.1021/acsomega.1c06968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 05/13/2023]
Abstract
Green hydrogen presents itself as a clean energy vector, which can be produced by electrolysis of water by utilizing renewable energy such as solar or wind. While current technologies are sufficient to support commercial deployment of fresh water electrolyzers, there remain a few well-defined challenges in the path of commercializing direct seawater electrolyzers, predominantly related to the sluggish oxygen evolution reaction (OER) kinetics and the competing chlorine evolution reaction (CER) at the anode. Herein, we report the facile and swift fabrication of an S,B-codoped CoFe oxyhydroxide via solution combustion synthesis for the OER with apparent CER suppression abilities. The as-prepared S,B-(CoFe)OOH-H attained ultralow overpotentials of 161 and 278 mV for achieving current densities of 10 and 1000 mA cm-2, respectively, in an alkaline saline (1 M KOH + 0.5 M NaCl) electrolyte, with a low Tafel slope of 46.7 mV dec-1. Chronoamperometry testing of the codoped bimetallic oxyhydroxides showed very stable behavior in harsh alkaline saline and in neutral pH saline environments. S,B-(CoFe)OOH-H oxyhydroxide showed a notable decrease in CER production in comparison to the other S,B-codoped counterparts. Selectivity measurements through online FE calculations showed high OER selectivity in alkaline (FE ∼ 97%) and neutral (FE ∼ 91%) pH saline conditions under standard 10 mA cm-2 operation. Moreover, systematic testing in electrolytes at pH values of 14 to 7 yielded promising results, thus bringing direct seawater electrolysis at near-neutral pH conditions closer to realization.
Collapse
Affiliation(s)
- Ahmed Badreldin
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| | - Karim Youssef
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
- Qatar
Shell Service Company W.L.L., P.O. Box 3747 Doha, Qatar
| | | | - Yiming Wubulikasimu
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| | - Zafar Khan Ghouri
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
- International
Center for Chemical and Biological Sciences, HEJ Research Institute
of Chemistry, University of Karachi, 75270 Karachi, Pakistan
| | - Khaled Elsaid
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| | - Dharmesh Kumar
- Qatar
Shell Service Company W.L.L., P.O. Box 3747 Doha, Qatar
| | - Ahmed Abdel-Wahab
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| |
Collapse
|
6
|
Srinivas K, Chen Y, Su Z, Yu B, Karpuraranjith M, Ma F, Wang X, Zhang W, Yang D. Heterostructural CoFe2O4/CoO nanoparticles-embedded carbon nanotubes network for boosted overall water-splitting performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Sang Y, Cao X, Ding G, Guo Z, Xue Y, Li G, Yu R. Constructing oxygen vacancy-enriched Fe 2O 3@NiO heterojunctions for highly efficient electrocatalytic alkaline water splitting. CrystEngComm 2022. [DOI: 10.1039/d1ce01309b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The oxygen vacancy-enriched Fe2O3@NiO heterojunctions assembled by nanoparticles and nanosheets can be used as a highly efficient and stable dual-function electrocatalyst to achieve efficient all-water splitting.
Collapse
Affiliation(s)
- Yan Sang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Xi Cao
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Gaofei Ding
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Zixuan Guo
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yingying Xue
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Guohong Li
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Runhan Yu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
8
|
Li X, Huang J, Feng L, He D, Liu Z, Li G, Zhang N, Feng Y, Cao L. Molybdenum and cobalt co-doped VC nanoparticles encapsulated in nanocarbon as efficient electrocatalysts for the hydrogen evolution reaction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01313k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum and cobalt co-doped VC nanoparticles encapsulated in nanocarbon (Mo, Co-VC@C) are successfully synthesized via a one-pot calcination route, exhibiting excellent electrocatalytic HER performance.
Collapse
Affiliation(s)
- Xiaoyi Li
- School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Jianfeng Huang
- School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Liangliang Feng
- School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Danyang He
- School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Zixuan Liu
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Guodong Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ning Zhang
- School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Yongqiang Feng
- School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Liyun Cao
- School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
9
|
Li X, Xing J, Chen J, Liu C, Qi X. Promoting the Phosphidation Process using an Oxygen Vacancy Precursor for Efficient Hydrogen Evolution Reaction. Chem Asian J 2021; 16:3604-3609. [PMID: 34506068 DOI: 10.1002/asia.202100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Indexed: 11/08/2022]
Abstract
Based on previous works, most of the transition metal phosphides (TMPs) were directly prepared by decomposing NaH2 PO2 with the precursors at high temperatures, which resulted in different degrees of phosphidation in the final product. Therefore, it is necessary to design an innovative approach to enhance the degree of phosphidation in the material using crystal defects. Here, oxygen-vacancy iron oxide/iron foam (Ov-Fe2 O3 /IF) was firstly prepared by generating oxygen vacancy in situ in an iron foam through heating in vacuum conditions. Subsequently, FeP/IF was formed by phosphating Ov-Fe2 O3 /IF. Under the effects of oxygen vacancies, oxygen-vacancy iron oxide could be completely phosphatized to produce more active sites on the surface of the material. This, in turn, could result in a catalyst with exceptional hydrogen evolution activity. Thus, the successful fabrication of FeP/IF demonstrated in this work provides an effective and feasible way for the preparation of other high-efficiency catalysts.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Jingbo Xing
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Junwei Chen
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chao Liu
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Xiaopeng Qi
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.,Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
10
|
Chen J, Qi X, Liu C, Zeng J, Liang T. Interfacial Engineering of a MoO 2-CeF 3 Heterostructure as a High-Performance Hydrogen Evolution Reaction Catalyst in Both Alkaline and Acidic Solutions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51418-51427. [PMID: 33156600 DOI: 10.1021/acsami.0c14119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exploring an efficient and pollution-free hydrogen evolution reaction (HER) electrocatalyst based on the combination of rare-earth metal and nonnoble metal is of significant importance. However, successfully achieving such a goal remains highly challenging. Herein, a nanosheet comprising a MoO2-CeF3 heterojunction (MoO2-CeF3/NF) is successfully prepared via a three-step method. (1) Growth of hexahedral nickel hydroxide [Ni(OH)2] on a 3D nickel foam (NF) as the scaffold. (2) In situ hydrothermal growth of a precursor nanosheet structure on the scaffold. (3) Calcination treatment at 450 °C in the presence of hydrogen. Herein, the electron redistribution at the heterointerface of CeF3 and MoO2 is a contributing factor toward enhanced HER activity. Appropriate introduction of CeF3 can enlarge the size of nanosheets, increase numerous active sites, increase the catalytic durability of the material, and change electron distribution on the MoO2 interface; all of the above improve HER activity. Because of its interfacial nanosheet structure, MoO2-CeF3/NF demonstrates pre-eminent HER capability in both alkaline (1.0 M KOH) and acidic (0.5 M H2SO4) electrolytes, with extremely small overpotentials of 18 and 42 mV at 10 mA cm-2, respectively. This is obviously lower than the overpotential of Pt/C in alkaline media (27 mV), and it is also close to the overpotential of Pt/C in acidic media (41 mV), at the same current density. More importantly, MoO2-CeF3/NF displays a better HER activity than Pt/C at a current density of >112 mA cm-2 in both alkaline and acidic electrolytes. This work offers a novel strategy toward high-performance hydrogen production by designing a transition metal oxide and rare-earth metal heterojunction.
Collapse
Affiliation(s)
- Jian Chen
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Xiaopeng Qi
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Chao Liu
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Jinming Zeng
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Tongxiang Liang
- College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
11
|
|