1
|
Wang W, Chen Y, Qiao S, Zhao J, Zhao W, Wei Y, Tang Y, Liu C. Constructing Dual-Phase Co 9S 8-CoMo 2S 4 Heterostructure as an Efficient Trifunctional Electrocatalyst for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. CHEMSUSCHEM 2025; 18:e202400678. [PMID: 39177178 DOI: 10.1002/cssc.202400678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Designing robust, efficient and inexpensive trifunctional electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is significant for rechargeable zinc-air batteries and water-splitting devices. To this end, constructing heterogenous structures based on transition metals stands out as an effective strategy. Herein, a dual-phase Co9S8-CoMo2S4 heterostructure grown on porous N, S-codoped carbon substrate (Co9S8-CoMo2S4/NSC) via a one-pot synthesis is investigated as the trifunctional ORR/OER/HER electrocatalyst. The optimized Co9S8-CoMo2S4/NSC2 exhibits that ORR has a half-wave potential of 0.86 V (vs. RHE) and the overpotentials at 10 mA cm-2 for OER and HER are 280 and 89 mV, respectively, superior to most transition-metal based trifunctional electrocatalysts reported to date. The Co9S8-CoMo2S4/NSC2-based zinc-air battery (ZAB) has a high open-circuit voltage (1.41 V), large capacity (804 mAh g-1) and highly stable cyclability (97 h at 10 mA cm-2). In addition, the prepared Co9S8-CoMo2S4/NSC2-based ZAB in series can self-drive the corresponding water-splitting device. The dual-phase Co9S8-CoMo2S4 heterostructure provides not only multi-type active sites to drive the ORR, OER and HER, but also high-speed charge transfer channels between two phases to improve the synergistic effect and reaction kinetics.
Collapse
Affiliation(s)
- Wenjie Wang
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Shanshan Qiao
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jing Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Wenlong Zhao
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yike Wei
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanhong Tang
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
2
|
Saji VS. Nanocarbons-Based Trifunctional Electrocatalysts for Overall Water Splitting and Metal-Air Batteries: Metal-Free and Hybrid Electrocatalysts. Chem Asian J 2024; 19:e202400712. [PMID: 39037924 DOI: 10.1002/asia.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Trifunctional electrocatalysts, an exciting class of materials that can simultaneously catalyze hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), can significantly enhance the performance and economic viability of electrochemical energy storage and conversion technologies such as water-splitting electrolyzers, metal-air batteries, fuel cells and their integrated devices. Such multifunctional electrocatalysts encompass multiple active sites that can simultaneously catalyze two or more different electrochemical reactions and are feasible routes for addressing global energy and environmental challenges. This review accounts for nanocarbons-based trifunctional electrocatalysts reported for electrolyzers, metal-air batteries and integrated electrolyzer-battery systems, providing a practical perspective. Metal-free and hybrid (hybrids of nanocarbons and transition metals/compounds) trifunctional electrocatalysts are covered. Given the growing importance of green technologies, we discuss biomass-derived carbon-based trifunctional electrocatalysts separately. The collective information provided in the review could help researchers derive more effective and durable trifunctional electrocatalysts suitable for commercial use.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Irmawati Y, Tan DA, Balqis F, Iskandar F, Sumboja A. Trifunctional electrocatalysts based on a bimetallic nanoalloy and nitrogen-doped carbon with brush-like heterostructure. NANOSCALE 2024; 16:1833-1842. [PMID: 38167734 DOI: 10.1039/d3nr05233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Trifunctional ORR/OER/HER catalysts are emerging for various sustainable energy storage and conversion technologies. For this function, employing materials with 1D structures leads to catalysts having limited surface area and structural robustness. Instead of 1D catalysts, heterostructured catalysts (i.e., catalysts consisting of interfaces created by combining diverse structural components) have attracted much attention due to their high efficiency. We have fabricated a directly grown 1D-1D heterostructured bimetallic N-doped carbon trifunctional catalyst based on Fe/Co bimetallic-organic frameworks, forming nanobrushes (FeCoNC-NB) with improved resistance to collapsing and substantial numbers of exposed active sites. The secondary 1D structure of this design contributes to creating interparticle conductive networks. By combining the brush-like heterostructure, FeCo alloy active sites, and N-doped carbon as support and for encapsulation of the metal, the catalyst features a high ORR Eonset value (1.046 V), low OER overpotential (363 mV), and comparable HER overpotential (254 mV) in alkaline electrolyte. Zn-air batteries with FeCoNC-NB demonstrate a power density of 195 mW cm-2 and a superior battery life of up to 350 h. Self-powered FeCoNC-NB-based water electrolyzers as energy conversion devices are also demonstrated. This work drives the progress of trifunctional catalysts based on heterostructured nonprecious metal N-doped carbon for energy storage and conversion developments.
Collapse
Affiliation(s)
- Yuyun Irmawati
- Doctoral Program of Nanosciences and Nanotechnology, Graduate School, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspiptek gedung 440, Tangerang Selatan 15314, Indonesia
| | - Davin Adinata Tan
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
| | - Falihah Balqis
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
| | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Afriyanti Sumboja
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| |
Collapse
|
4
|
Li J, Huang S, Li Z, Zhao X, Ouyang B, Kan E, Zhao J, Zhang W. Bimetallic Organic Framework-Decorated Leaf-like 2D Nanosheets as Flexible Air Cathode for Rechargeable Zn-air Batteries. Chemistry 2023; 29:e202202992. [PMID: 36349874 DOI: 10.1002/chem.202202992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Exploring highly active and robust self-supporting air electrodes is the key for flexible Zn-air batteries (FZABs). Therefore, we report a novel 3D structural bimetal-based self-supporting electrode consisting of hybrid Cu, Co nanoparticles co-modified nitrogen-doped carbon nanosheets on carbon cloth (Cu, Co NPs@NCNSs/CC), which displays excellent electrochemical activity and durability of the oxygen reduction/evolution reaction (ORR/OER). The Cu, Co NPs@NCNSs/CC exhibits a half-wave potential of 0.863 V toward ORR and an overpotential of 225 mV at 10 mA cm-2 toward OER, owing to its exposed bimetallic sites accelerating the kinetic reaction. In addition, the density functional theory calculation proves that the synergistic effect of CuCo sites favors ORR and OER. Hence, the FZABs based on Cu, Co NPs@NCNSs/CC achieve a larger open-circuit potential (1.45 V), higher energy density (130.10 mW cm-2 ), and outstanding cycling stability. All remarkable results demonstrate valuable enlightenment for seeking advanced energy materials of portable and wearable electronics.
Collapse
Affiliation(s)
- Jiajia Li
- Province-Ministry Co-construction, Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, 071002, Baoding, Hebei, P. R. China
| | - Shuhong Huang
- Province-Ministry Co-construction, Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, 071002, Baoding, Hebei, P. R. China
| | - Zhiyong Li
- Province-Ministry Co-construction, Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, 071002, Baoding, Hebei, P. R. China
| | - Xiaohui Zhao
- Province-Ministry Co-construction, Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, 071002, Baoding, Hebei, P. R. China
| | - Bo Ouyang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, 210094, Nanjing, P. R China
| | - Erjun Kan
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, 210094, Nanjing, P. R China
| | - Jie Zhao
- Machine Vision Technology, Innovation Center of Hebei Province, College of Electronic and Information Engineering, Hebei University, 071002, Baoding, Hebei, P. R. China
| | - Wenming Zhang
- Province-Ministry Co-construction, Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, 071002, Baoding, Hebei, P. R. China
| |
Collapse
|
5
|
Wang Q, Zhao S, Yu H, Zhang D, Wang Q. Synergistic Engineering of Defects and Architecture in a Co@Co 3O 4@N-CNT Nanocage toward Li-Ion Batteries and HER. Inorg Chem 2022; 61:19567-19576. [DOI: 10.1021/acs.inorgchem.2c03492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Qi Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan430074, China
| | - Shanzhi Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan430074, China
| | - Hao Yu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan430074, China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan430074, China
| | - Qiufan Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan430074, China
| |
Collapse
|
6
|
Michalke J, Faust K, Bögl T, Bartling S, Rockstroh N, Topf C. Mild and Efficient Heterogeneous Hydrogenation of Nitroarenes Facilitated by a Pyrolytically Activated Dinuclear Ni(II)-Ce(III) Diimine Complex. Int J Mol Sci 2022; 23:ijms23158742. [PMID: 35955876 PMCID: PMC9369285 DOI: 10.3390/ijms23158742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
We communicate the assembly of a solid, Ce-promoted Ni-based composite that was applied as catalyst for the hydrogenation of nitroarenes to afford the corresponding organic amines. The catalytically active material described herein was obtained through pyrolysis of a SiO2-pellet-supported bimetallic Ni-Ce complex that was readily synthesized prior to use from a MeO-functionalized salen congener, Ni(OAc)2·4 H2O, and Ce(NO3)3·6 H2O. Rewardingly, the requisite ligand for the pertinent solution phase precursor was accessible upon straightforward and time-saving imine condensation of ortho-vanillin with 1,3-diamino-2,2′-dimethylpropane. The introduced catalytic protocol is operationally simple in that the whole reaction set-up is quickly put together on the bench without the need of cumbersome handling in a glovebox or related containment systems. Moreover, the advantageous geometry and compact-sized nature of the used pellets renders the catalyst separation and recycling exceptionally easy.
Collapse
Affiliation(s)
- Jessica Michalke
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Institute of Inorganic Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Kirill Faust
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Thomas Bögl
- Department of Analytical Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Stephan Bartling
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Nils Rockstroh
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Christoph Topf
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Correspondence:
| |
Collapse
|
7
|
Elabbasy MT, Algahtani FD, Al-Harthi HF, Abd El-Kader M, Eldrehmy EH, Abd El-Rahman GI, El-Morsy M, Menazea A. Optimization of compositional manipulation for hydroxyapatite modified with boron oxide and graphene oxide for medical applications. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2022; 18:5419-5431. [DOI: 10.1016/j.jmrt.2022.04.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Wang Y, Yu M, Zhang T, Xue Z, Ma Y, Sun H. Defect-rich boron doped carbon nanotubes as an electrocatalyst for hybrid Li–air batteries. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01832a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BC3NTs with topological defects improve the performance of hybrid lithium–air batteries, conducive to the ORR and OER.
Collapse
Affiliation(s)
- Yuyang Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, 110168 Shenyang, China
| | - Mingfu Yu
- School of Mechanical Engineering, Shenyang Jianzhu University, 110168 Shenyang, China
| | - Tianyu Zhang
- School of Mechanical Engineering, Shenyang Jianzhu University, 110168 Shenyang, China
| | - Zhichao Xue
- School of Science, Shenyang Jianzhu University, 110168 Shenyang, China
| | - Ying Ma
- School of Material Science and Engineering, Shenyang Jianzhu University, 110168 Shenyang, China
| | - Hong Sun
- School of Mechanical Engineering, Shenyang Jianzhu University, 110168 Shenyang, China
| |
Collapse
|
9
|
Generation of Cobalt-Containing Nanoparticles on Carbon via Pyrolysis of a Cobalt Corrole and Its Application in the Hydrogenation of Nitroarenes. Catalysts 2021. [DOI: 10.3390/catal12010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report on the manufacture of a state-of-the-art heterogeneous non-noble metal catalyst, which is based on a molecularly well-defined phosphine-tagged cobalt corrole complex. This precursor compound is readily synthesized from convenient starting materials while the active material is obtained through wet-impregnation of the pertinent metalliferous macrocycle onto carbon black followed by controlled pyrolysis of the loaded carrier material under an inert gas atmosphere. Thus, the obtained composite was then applied in the heterogeneous hydrogenation of various nitroarenes to yield a vast array of valuable aniline derivatives that were conveniently isolated as their hydrochloride salts. The introduced catalytic protocol is robust and user-friendly with the entire assembly of the reaction set-up enabling the conduction of the experiments on the laboratory bench without any protection from air.
Collapse
|
10
|
Li L, Xie M, Zhang Y, Xu Y, Li J, Shan Y, Zhao Y, Zhou D, Chen X, Cui W. Thermal safety and performances analysis of gel polymer electrolytes synthesized by in situ polymerization for Li-ion battery. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04965-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Yu H, Zhang H, Zhang Z. Study on the Simple Surface Treatments of N, P Dual‐doped Carbon as Metal‐free Catalyst for Metal‐air Batteries. ChemCatChem 2020. [DOI: 10.1002/cctc.202001319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Heping Yu
- College of Chemistry and Chemical Engineering Qingdao University Qingdao Shandong 266071 P.R. China
| | - Hui Zhang
- College of Chemistry and Chemical Engineering Qingdao University Qingdao Shandong 266071 P.R. China
| | - Zhongyi Zhang
- College of Chemistry and Chemical Engineering Qingdao University Qingdao Shandong 266071 P.R. China
| |
Collapse
|