1
|
Hao C, Tan J, Lv Z, Jiang M, Ni C, Shen Y, Wang X. Construction of layered micro-/nano-structured MoNiCo-S cathode and broad bean shell derived carbon anode for hybrid supercapacitors. J Colloid Interface Sci 2025; 684:262-276. [PMID: 39832446 DOI: 10.1016/j.jcis.2025.01.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Transition metal sulfides, despite their abundance of electrochemically active sites, often demonstrate inadequate rate performance and mechanical stability. The development of a multi-dimensional hierarchical architecture has proven to be an effective approach to address the limitations associated with sulfides. In the present study, MoNiCo-S nanorods featuring hierarchical micro-/nano-structures were successfully synthesized through a straightforward methodology that involved "in situ growth-etching-vulcanization". The one-dimensional nanostructure CoMoO4 served as both the substrate and metal source for the in-situ growth of ZIF-67. Subsequently, Lewis acid was introduced to facilitate the formation of hydroxides, ultimately leading to the synthesis of sulfides via ion exchange with sulfur ions. Due to its rational design and element composition, MoNiCo-S exhibited excellent capacitance (3125.1 F/g at 1 A/g) and cycling stability (capacitance retention rate of 72.9 % over 5,000 cycles). In addition, the broad bean shell derived carbon (KBBC), prepared through a carbonization and activation process, demonstrated a specific capacitance of 295.0 F/g and a cyclic capacitance retention of 99.6 %. The assembled MoNiCo-S//KBBC asymmetric supercapacitor devices achieves a high energy density of 78.5 Wh kg-1 at a power density of 1004.3 W kg-1. After 10,000 cycles, the device exhibited a capacitance retention rate of 107.9 %, indicating excellent cycling stability. This research contributes significantly to the advancement of sulfide materials in the context of performance optimization design.
Collapse
Affiliation(s)
- Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jizheng Tan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zijun Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mingjiang Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chenghao Ni
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuru Shen
- School of Material and Chemical Engineering, Tongren University, Tongren 554300, China.
| | - Xiaohong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Wang M, Li L, Liu Z, Wu F, Jin H, Wang Y, Cai S. Multicomponent Co 2O 3@CoMo 2S 4 Core-Shell Structures as a Binder-Free Electrode for Cycling Stability Supercapacitors. ACS OMEGA 2025; 10:8901-8910. [PMID: 40092828 PMCID: PMC11904649 DOI: 10.1021/acsomega.4c05172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Transitional bimetallic sulfides have garnered significant interest due to their versatile redox reactions, strong electrochemical activity, and cost-effectiveness. However, their low energy density and poor rate performance have hindered their use in energy storage systems. To overcome these challenges, we have developed a Co2O3@CoMo2S4 core-shell structure using a strategic design approach, serving as a conductive framework for supercapacitors. The innovative Co2O3@CoMo2S4 core-shell structure exhibits exceptional performance, achieving a specific capacitance of 4951.8 F g-1 at 1 A g-1 and retaining 90.85% cyclic stability after 5500 cycles, outperforming most reported transitional bimetallic sulfides. The Co2O3@CoMo2S4//AC supercapacitor achieves an energy density of 41.66 Wh kg-1 and a power density of 0.35 kW kg-1. Our research paves the way for the development of transitional bimetallic sulfides with core-shell structures that offer superior performance in supercapacitor applications, providing valuable insights for future advancements in the field.
Collapse
Affiliation(s)
- Meilong Wang
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Linsong Li
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Zhentao Liu
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Fuzhong Wu
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Huixin Jin
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yi Wang
- College
of Chemistry and Material Engineering, Guiyang
University, Guiyang, Guizhou 550005, PR China
| | - Siyu Cai
- College
of Chemistry and Material Engineering, Guiyang
University, Guiyang, Guizhou 550005, PR China
| |
Collapse
|
3
|
Qian X, Jiang L, Fang J, Ye J, He G, Chen H. Constructing a Self-Supported Bifunctional Multiphase Heterostructure for Electrocatalytic Overall Water Splitting. Inorg Chem 2024; 63:15368-15375. [PMID: 39099539 DOI: 10.1021/acs.inorgchem.4c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Developing well-performing and stable bifunctional electrocatalysts is of great importance for efficient green hydrogen production through water electrolysis. Herein, a three-dimensional self-supported CoMoS3.13/FeS2/Co3S4 on carbon paper (FeCoMoS/CP) heterostructure with interconnected nanosheets for overall water splitting was fabricated by a facile hydrothermal method followed by vulcanization treatment. The FeCoMoS/CP heterostructure with high structural integrity and more accessible active sites can effectively optimize the electronic structure through component regulation to achieve enhanced catalytic activity. Significantly, the FeCoMoS/CP required overpotentials of 257 mV at 50 mA cm-2 for OER and 280 mV at 20 mA cm-2 for HER. Importantly, the assembled FeCoMoS/CP||FeCoMoS/CP alkaline electrolyzer achieved a superior cell voltage of 1.48 V at 10 mA cm-2 with superb long-term stability, which implies a remarkable electrocatalytic performance of the FeCoMoS/CP heterostructure for overall water splitting. This work provides an applicable route for synthesizing high-performance bifunctional catalysts toward water electrolysis.
Collapse
Affiliation(s)
- Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lin Jiang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Fang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jingrui Ye
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
4
|
Pan L, Wang D, Wang J, Chu Y, Li X, Wang W, Mitsuzaki N, Jia S, Chen Z. Morphological control and performance engineering of Co-based materials for supercapacitors. Phys Chem Chem Phys 2024; 26:9096-9111. [PMID: 38456310 DOI: 10.1039/d3cp06038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
As one of the most promising energy storage devices, supercapacitors exhibit a higher power density than batteries. However, its low energy density usually requires high-performance electrode materials. Although the RuO2 material shows desirable properties, its high cost and toxicity significantly limit its application in supercapacitors. Recent developments demonstrated that Co-based materials have emerged as a promising alternative to RuO2 for supercapacitors due to their low cost, favorable redox reversibility and environmental friendliness. In this paper, the morphological control and performance engineering of Co-based materials are systematically reviewed. Firstly, the principle of supercapacitors is briefly introduced, and the characteristics and advantages of pseudocapacitors are emphasized. The special forms of cobalt-based materials are introduced, including 1D, 2D and 3D nanomaterials. After that, the ways to enhance the properties of cobalt-based materials are discussed, including adding conductive materials, constructing heterostructures and doping heteroatoms. Particularly, the influence of morphological control and modification methods on the electrochemical performances of materials is highlighted. Finally, the application prospect and development direction of Co-based materials are proposed.
Collapse
Affiliation(s)
- Lin Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jibiao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yuan Chu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiaosong Li
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu, 213032, China
| | | | - Shuyong Jia
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Wu ZX, Fan LQ, Chen JJ, Deng XG, Tang T, Huang YF, Wu JH. Amorphous Co-Mo-S nanospheres fabricated via room-temperature vulcanization for asymmetric supercapacitors. J Colloid Interface Sci 2023; 649:880-889. [PMID: 37390535 DOI: 10.1016/j.jcis.2023.06.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Ternary metal sulfides employed in supercapacitors exhibit better electrochemical performances than their counterpart oxides due to their superior conductivity. However, the insertion/extraction of electrolyte ions can lead to a significant volume change in electrode materials, which can result in poor cycling stability. Herein, novel amorphous Co-Mo-S nanospheres were fabricated through a facile room-temperature vulcanization method. It involves the conversion of crystalline CoMoO4 by reacting it with Na2S at room temperature. In addition to the conversion of the crystalline state into an amorphous structure with more grain boundaries, which is beneficial for the transport of electron/ion and can accommodate the volume change generated by the insertion/extraction of electrolyte ions, the production of more pores led to an increased specific surface area. The electrochemical results indicate that the as-prepared amorphous Co-Mo-S nanospheres had a specific capacitance of up to 2049.7F/g@1 A/g together with good rate capability. The amorphous Co-Mo-S nanospheres can be used as the cathode of supercapacitors and assembled with an activated carbon anode into an asymmetric supercapacitor possessing a satisfactory energy density of 47.6 Wh kg-1@1012.9 W kg-1. One of the prominent features exhibited by this asymmetric device is its remarkable cyclic stability, with a capacitance retention of 107% after 10,000 cycles.
Collapse
Affiliation(s)
- Zheng-Xue Wu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Le-Qing Fan
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Jiao-Juan Chen
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xu-Geng Deng
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Tao Tang
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yun-Fang Huang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ji-Huai Wu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China.
| |
Collapse
|
6
|
Wei J, Ding J, Hu Q, Tian X, Bai M, Qian J, Wang K. Internal reference self-powered aptasensor for on-site detection of MC-RR used sunlight as light source and CoMoS 4 hollow nanospheres as photocathode. Anal Chim Acta 2023; 1262:341239. [PMID: 37179056 DOI: 10.1016/j.aca.2023.341239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
As a liver toxin, long-term exposure of microcystin-arginine-arginine (MC-RR) is harmful to the ecological environment and human health, so it is necessary to realize on-site detection of MC-RR. The self-powered sensor has enormous potential for on-site detection in battery-free devices. However, due to the low photoelectric conversion efficiency and poor anti-interference ability to environmental fluctuation, the field detection of self-powered sensor is limited. Herein, we tackled above problems according to the following two aspects. For one hand, CoMoS4 hollow nanospheres modified internal reference electrode was arranged in the self-powered sensor, which effectively avoided the influence of unstable sunlight caused by different space, time, weather and other factors. For the other hand, dual-photoelectrode could absorb and convert sunlight, so as to improve the solar capture and energy utilization, and realized the sunlight instead of traditional external light source (Xenon lamp or LED, etc.). This method effectively simplified the sensing device and solved the interference of environment in on-site detection. In addition, multimeter was used to measure the output voltage instead of electrochemical workstation, achieving the purpose of portability. This work established a sunlight-driven internal reference self-powered sensor with miniaturization, portability and anti-interference to realize MC-RR on-site monitoring in lake water.
Collapse
Affiliation(s)
- Jie Wei
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Junfeng Ding
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qinqin Hu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xuyan Tian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Meixiu Bai
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
7
|
Zhang K, Zeng HY, Ge KW, Wang MX, Li HB. In Situ Transformation of Metal Molybdates into Polymetallic Sulfides with Enriched Edge Sites for High-Performance Supercapacitors. Inorg Chem 2023; 62:8219-8231. [PMID: 37191263 DOI: 10.1021/acs.inorgchem.3c00620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An effective approach to synthesize polycrystalline Ni-Co-Mo sulfide (NiCoMoS) is developed through doping engineering coupled with chemical transformation. The polycrystalline NiCoMoS with enriched active edge sites is designed and fabricated on a Ni foam (NF) via a facile hydrothermal calcination and post-sulfidation approach, where the polycrystalline NiCoMoO4 precursor is elaborately prepared by doping Co ions into the NiMoO4 lattice and subsequently in-situ-converted into NiCoMoS with 3D architectures of ordered nanoneedle arrays. Benefiting from the unique 3D structure and synergistic effects of each component, the optimized needle-like NiCoMoS(2.0) arraying on a NF as a self-standing electrode exhibits superior electrochemical performances with a high specific charge (920.0 C g-1 at 1.0 A g-1), excellent rate capability, and good long-term stability. Furthermore, the assembled NiCoMoS//activated carbon hybrid device presents a satisfactory supercapacitor performance, affording an energy density of 35.2 W h kg-1 at a power density of 800.0 W kg-1 and competitive long-term stability (83.8% retention at 15 A g-1 after 10,000 cycles). Such a novel strategy may pave a new route for exploring other polymetallic sulfides with enriched, exposed active edge sites for energy-related applications.
Collapse
Affiliation(s)
- Kai Zhang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Hong-Yan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Kai-Wen Ge
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Ming-Xin Wang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Hao-Bo Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| |
Collapse
|
8
|
Lv S, Geng P, Chi Y, Wang H, Chu X, Zhao Y, Wu B, Shang W, Wang C, Yang J, Cheng Z, Yang X. Hierarchical Design of CuO/Nickel-Cobalt-Sulfide Electrode by a Facile Two-Step Potentiostatic Deposition. MICROMACHINES 2023; 14:888. [PMID: 37421121 DOI: 10.3390/mi14040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 07/09/2023]
Abstract
Herein, a scalable electrodeposition strategy is proposed to achieve hierarchical CuO/nickel-cobalt-sulfide (NCS) electrodes using two-step potentiostatic deposition followed by high-temperature calcination. The introduction of CuO provides support for the further deposition of NSC to ensure a high load of active electrode materials, thus generating more abundant active electrochemical sites. Meanwhile, dense deposited NSC nanosheets are connected to each other to form many chambers. Such a hierarchical electrode prompts a smooth and orderly transmission channel for electron transport, and reserves space for possible volume expansion during the electrochemical test process. As a result, the CuO/NCS electrode exhibits superior specific capacitance (Cs) of 4.26 F cm-2 at 20 mA cm-2 and remarkable coulombic efficiency of 96.37%. Furthermore, the cycle stability of the CuO/NCS electrode remains at 83.05% within 5000 cycles. The multistep electrodeposition strategy provides a basis and reference for the rational design of hierarchical electrodes to be applied in the field of energy storage.
Collapse
Affiliation(s)
- Sa Lv
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Peiyu Geng
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Yaodan Chi
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Huan Wang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xuefeng Chu
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Yang Zhao
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Boqi Wu
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Wenshi Shang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Chao Wang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Jia Yang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Zhifei Cheng
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xiaotian Yang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
9
|
Rajendran K, Nallal M, Ganesan M, Shanmugasundaram M, Hira SA, Gopalakrishnan G, Murugan S, Aharon G, Park KH. Fabrication of dual functional 3D-CeVO4/MWNT hybrid nanocomposite as a high-performance electrode material for supercapacitor and L-tryptophan detection. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Lv S, Shang W, Chi Y, Wang H, Chu X, Wu B, Geng P, Wang C, Yang J, Cheng Z, Yang X. Achieving Self-Supported Hierarchical Cu(OH) 2/Nickel-Cobalt Sulfide Electrode for Electrochemical Energy Storage. MICROMACHINES 2023; 14:125. [PMID: 36677186 PMCID: PMC9865068 DOI: 10.3390/mi14010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Herein, nickel-cobalt sulfide (NCS) nanoflakes covering the surface of Cu(OH)2 nanorods were achieved by a facile two-step electrodeposition strategy. The effect of CH4N2S concentration on formation mechanism and electrochemical behavior is investigated and optimized. Thanks to the synergistic effect of the selected composite components, the Cu(OH)2/NCS composite electrode can deliver a high areal specific capacitance (Cs) of 7.80 F cm-2 at 2 mA cm-2 and sustain 5.74 F cm-2 at 40 mA cm-2. In addition, coulombic efficiency was up to 84.30% and cyclic stability remained 82.93% within 5000 cycles at 40 mA cm-2. This innovative work provides an effective strategy for the design and construction of hierarchical composite electrodes for the development of energy storage devices.
Collapse
Affiliation(s)
- Sa Lv
- Correspondence: (S.L.); (X.Y.); Tel.: +86-0431-8456-6181 (S.L.)
| | | | | | | | | | | | | | | | | | | | - Xiaotian Yang
- Correspondence: (S.L.); (X.Y.); Tel.: +86-0431-8456-6181 (S.L.)
| |
Collapse
|
11
|
Yang L, Zhu Q, Yang K, Xu X, Huang J, Chen H, Wang H. A Review on the Application of Cobalt-Based Nanomaterials in Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4065. [PMID: 36432350 PMCID: PMC9695735 DOI: 10.3390/nano12224065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Among many electrode materials, cobalt-based nanomaterials are widely used in supercapacitors because of their high natural abundance, good electrical conductivity, and high specific capacitance. However, there are still some difficulties to overcome, including poor structural stability and low power density. This paper summarizes the research progress of cobalt-based nanomaterials (cobalt oxide, cobalt hydroxide, cobalt-containing ternary metal oxides, etc.) as electrode materials for supercapacitors in recent years and discusses the preparation methods and properties of the materials. Notably, the focus of this paper is on the strategies to improve the electrochemical properties of these materials. We show that the performance of cobalt-based nanomaterials can be improved by designing their morphologies and, among the many morphologies, the mesoporous structure plays a major role. This is because mesoporous structures can mitigate volume changes and improve the performance of pseudo capacitance. This review is dedicated to the study of several cobalt-based nanomaterials in supercapacitors, and we hope that future scholars will make new breakthroughs in morphology design.
Collapse
|
12
|
Improved electrochemical properties of Co-P hydrogen storage material via doping with TiO2 nanotubes, nanofibers and nanoparticles prepared by different methods. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Zhang Z, Zhang X, Xu X, Xiong R, Tian X, Wang C. In-situ directly anchored CoMoS4 particles on reduced graphene oxide nanosheets for the high-efficiency asymmetric supercapacitor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Yu Q, Gong J, Kong W, Long Y, Chen J, Pu L, Zhang H, Dai Y. Preparation of NiAl LDH@Mn3O4@Co-MOF ternary composites using MOFs as a framework for high-performance asymmetric supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Gong J, Luo W, Zhao Y, Wang J, Wang S, Hu C, Yang J, Dai Y. Surface Engineering of Ni wires and Rapid Growth Strategy of Ni-MOF Synergistically Contribute to High-Performance Fiber-Shaped Aqueous Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204346. [PMID: 36055773 DOI: 10.1002/smll.202204346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The fiber-shaped aqueous battery (FSAB) has the advantages of flexibility, portability and safety making it promising for energy storage applications. In particular, FSABs based on metal wire current collectors with good electrical conductivity can provide excellent energy storage properties. However, the low adhesion caused by the smooth surface of the metal wire and the unavailability of many electrochemically active materials for use in FSAB is holding back their development. Herein, a substrate is effectively constructed for the strongly applicable growth of the active material via a Ni wire etching strategy. In addition, core-shell structured nanorod arrays consisting of NiCo2 O4 and Ni-metal-organic frameworks (MOFs) are constructed, where Ni-MOF can be obtained rapidly via β-Ni(OH)2 intermediates. The NCO/NM-15 electrode obtained by structural regulation exhibits high capacity and outstanding cycling stability. De calculations further demonstrate that the formation of NiCo2 O4 and Ni-MOF heterostructures results in a significant increase in the Fermi level leading to more active internal electrons, which facilitates electron transfer in electrochemical reactions. An assembled FSAB device can provide an energy density of 158.33 µWh cm-2 and the devices can provide power for a calculator and an electronic watch screen, demonstrating a wide application prospect in the field of energy storage.
Collapse
Affiliation(s)
- Jiaxu Gong
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Weige Luo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yang Zhao
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Jiaheng Wang
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Shuai Wang
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Cunhai Hu
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yatang Dai
- State Key Laboratory of Environment-friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| |
Collapse
|
16
|
Qu C, Cao J, Chen Y, Wei M, Liu X, Feng B, Jin S, Xu A, Jin D, Yang L. Hierarchical CoMoS 3.13/MoS 2 hollow nanosheet arrays as bifunctional electrocatalysts for overall water splitting. Dalton Trans 2022; 51:14590-14600. [PMID: 36082745 DOI: 10.1039/d2dt02312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow hetero-nanosheet arrays have attracted great attention due to their efficient catalytic abilities for water splitting. We successfully fabricated ZIF-67-derived hollow CoMoS3.13/MoS2 nanosheet arrays on carbon cloth in situ through a two-step heating-up hydrothermal method, in which the MoS2 nanosheets were suitably distributed on the surface of the hollow CoMoS3.13 nanosheet arrays. There was a distinct synergistic effect between CoMoS3.13 and MoS2, and a large number of defective and disordered interfaces were formed, which improved the charge transfer rate and provided abundant electrochemical active sites. CMM 0.5, with the optimal Mo doping concentration of 0.5 mmol, exhibited the best catalytic properties. The overpotential values of CMM 0.5 at 10 mA cm-2 were only 107 and 169 mV for the HER and OER, respectively, and it had nearly 100% faradaic efficiency. A dual-electrode electrolytic cell assembled with CMM 0.5 required a voltage of only 1.507 V at 10 mA cm-2 for overall water splitting, and it displayed remarkable long-term durable bifunctional stability.
Collapse
Affiliation(s)
- Chunhong Qu
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Jian Cao
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China.,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Yanli Chen
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Maobin Wei
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China
| | - Xiaoyan Liu
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Bo Feng
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Shuting Jin
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Ao Xu
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Doudou Jin
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Lili Yang
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China.,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| |
Collapse
|
17
|
Andikaey Z, Ensafi AA, Rezaei B, Hu JS. Nickel/cobalt/copper sulfide dodecahedral hollow multi-shelled structures, characterization, and application as a suitable nanomaterial for high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Ternary Nanohybrid of Ni3S2/CoMoS4/MnO2 on Nickel Foam for Aqueous and Solid-State High-Performance Supercapacitors. NANOMATERIALS 2022; 12:nano12111945. [PMID: 35683798 PMCID: PMC9182481 DOI: 10.3390/nano12111945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023]
Abstract
To overcome the issues related to supercapacitor (SC) electrodes, such as high cost, low specific capacitance (Cs), low energy density (ED), requirements for expensive binder, etc., binderless electrodes are highly desirable. Here, a new ternary nanohybrid is presented as a binder-free SC electrode based on Ni3S2, CoMoS4, and MnO2. A facile two-step hydrothermal route, followed by a short thermal annealing process, is developed to grow amorphous polyhedral structured CoMoS4 and further wrap MnO2 nanowires on Ni foam. This rationally designed binder-free electrode exhibited the highest Cs of 2021 F g−1 (specific capacity of 883.8 C g−1 or 245.5 mAh g−1) at a current density of 1 A g−1 in 1 M KOH electrolyte with a highly porous surface morphology. This electrode material exhibited excellent cycling stability (90% capacitance retention after 4000 cycles) due to the synergistic contribution of individual components and advanced surface properties. Furthermore, an aqueous binder-free asymmetric SC based on this ternary composite exhibited an ED of 20.7 Wh kg−1, whereas a solid-state asymmetric SC achieved an ED of 13.8 Wh kg−1. This nanohybrid can be considered a promising binder-free electrode for both aqueous and solid-state asymmetric SCs with these remarkable electrochemical properties.
Collapse
|
19
|
Li T, Zhao Z, Su Z, Sun R, Li X, Shang Y. CuCoNi–S anchored CoMoO 4/MoO 3 forming core–shell structure for high-performance asymmetric supercapacitors. Dalton Trans 2022; 51:16111-16118. [DOI: 10.1039/d2dt02532a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CoMoO4/MoO3@CuCoNi–S is prepared by hydrothermal and electrodeposition methods. It offers promising supercapacitor properties.
Collapse
Affiliation(s)
- Tiansheng Li
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Zhifeng Zhao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Zhanhua Su
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Rui Sun
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Xiaofeng Li
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yongchen Shang
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
20
|
Wang X, Xu P, Zhang P, Ma S. Preparation of Electrode Materials Based on Carbon Cloth via Hydrothermal Method and Their Application in Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7148. [PMID: 34885303 PMCID: PMC8658651 DOI: 10.3390/ma14237148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
Supercapacitors have the unique advantages of high power density, fast charge and discharge rates, long cycle life, high safety, and reliability, and are increasingly being used for applications including automobiles, rail transit, communication equipment, digital electronics, and aerospace equipment. The supercapacitor industry is currently in a stage of rapid development; great breakthroughs have also been made in improving the performance of supercapacitors and the expansion of their application. Electrode technology is the core of supercapacitors. Transition-metal compounds have a relatively high theoretical capacity and have received widespread attention as electrode materials for supercapacitors. In addition, there is a synergistic effect between the different components of various electrode composite materials. Due to their superior electrochemical performance, supercapacitors are receiving increasing research attention. Flexible supercapacitors have been hailed for their good plasticity, resulting in a development boom. This review article mainly outlines the development process of various electrode materials, including carbon materials, conductive polymers, metal compounds, and composite materials, as well as flexible electrode materials based on carbon cloth.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (X.W.); (P.Z.); (S.M.)
| | - Peiquan Xu
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (X.W.); (P.Z.); (S.M.)
- Shanghai Collaborative Innovation Center of Laser Advanced Manufacturing Technology, Shanghai 201620, China
| | - Pengyu Zhang
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (X.W.); (P.Z.); (S.M.)
| | - Shuyue Ma
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (X.W.); (P.Z.); (S.M.)
| |
Collapse
|
21
|
Liu H, An S, Sun X, Han X, Cui J, Zhang Y, He W. Multi-layer unbonded nickel foam/carbon nanotube array/Ni-Co bimetallic sulfide as high-performance electrode materials for supercapacitors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Hu Q, Zhang S, Zou X, Hao J, Bai Y, Yan L, Li W. Coordination agent-dominated phase control of nickel sulfide for high-performance hybrid supercapacitor. J Colloid Interface Sci 2021; 607:45-52. [PMID: 34492352 DOI: 10.1016/j.jcis.2021.08.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The property of an active material is not only influenced by its morphology and size, but also by its crystal phase. The present phase regulation of nickel sulfide is mainly achieved by controlling the participation of sulfur source in reaction. Thus, new perspectives direct at phase control need to be explored and supplemented. Herein, we proposed a novel coordination agent-dominated phase modulation strategy assisted by a hydrothermal process. It is found that increasing the amount of coordination agent can drove the phase transformation from the initial composite of β-NiS/α-NiS/Ni3S4 to β-NiS/α-NiS, and then to pure β-NiS. The mechanism of phase regulation has been proposed, and the general application of this method has been demonstrated. By employing coordination agent, the size of resulted products is reduced, and the morphology is optimized. As a result, all of the pure β-NiS electrodes indicate significantly enhanced specific capacity than the pristine β-NiS/α-NiS/Ni3S4 composite. Notably, the sample synthesized with 3 mmol of urea (S11) shows uniform morphology and smallest size, and it gives a highest specific capacity of 223.8 mAh g-1 at 1 A g-1, almost 1.5 times of the original sample. The fabricated S11//rGO device delivers a high energy density of 56.6 Wh·kg-1 at a power density of 407.5 W·kg-1, and keeps an impressive capacity retention of 84% after 20,000 cycles. This work put forwards a new prospect for controlling the phase and composition of nickel sulfide based on coordination chemistry.
Collapse
Affiliation(s)
- Qin Hu
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Shengtao Zhang
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Xuefeng Zou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Jiangyu Hao
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Youcun Bai
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lijin Yan
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenpo Li
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
23
|
Dai M, Wang R. Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006813. [PMID: 34013648 DOI: 10.1002/smll.202006813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Nanostructures with well-defined structures and rich active sites occupy an important position for efficient energy storage and conversion. Recent studies have shown that a transition metal chalcogenide (TMC) has a unique structure, such as diverse structural morphology, excellent stability, high efficiency, etc., and is used in the fields of electrochemistry and catalysis. The nanohollow structure metal chalcogenide has broad application prospects due to the existence of a large number of active sites and a wide internal space, allowing a large number of ions and electrons to be transported. Summarizing synthetic strategies of nanostructured hollow transition metal sulfides (HTMC) and their applications in the field of energy storage and conversion is discussed here. Through some representative examples, the fabrication and properties of various hollow structures are analyzed, which prompt some emerging nanoengineering designs to be applied to transition metal chalcogenides. It is hoped that the construction of the HTMC will lead to a deeper understanding for the further exploration of energy storage and conversion.
Collapse
Affiliation(s)
- Meng Dai
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
24
|
Wang S, Zhang P, Liu C. Synthesis of hierarchical bimetallic sulfide NiCo2S4 for high-performance supercapacitors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Gong J, Yang J, Wang J, Lv L, Wang W, Pu L, Zhang H, Dai Y. A dual NiCo metal-organic frameworks derived NiCo2S4 core-shell nanorod arrays as high-performance electrodes for asymmetric supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137794] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Wan L, Yuan Y, Liu J, Chen J, Zhang Y, Du C, Xie M. A free-standing Ni–Mn–S@NiCo2S4 core–shell heterostructure on carbon cloth for high-energy flexible supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137579] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Guo Z, Diao Y, Han X, Liu Z, Ni Y, Zhang L. Mesoporous NiCo 2Se 4 tube as an efficient electrode material with enhanced performance for asymmetric supercapacitor applications. CrystEngComm 2021. [DOI: 10.1039/d0ce01778g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
• One-component NiCo2Se4 is synthesized. • The unique mesoporous tubular micro-nanostructure greatly improves the electrochemical performance. • Selenium with high electrical conductivity is beneficial for improving the energy density and power density.
Collapse
Affiliation(s)
- Zhixiang Guo
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes
- College of Chemistry and Materials Science
| | - Yuting Diao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes
- College of Chemistry and Materials Science
| | - Xinru Han
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes
- College of Chemistry and Materials Science
| | - Zihao Liu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes
- College of Chemistry and Materials Science
| | - Yonghong Ni
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes
- College of Chemistry and Materials Science
| | - Li Zhang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes
- College of Chemistry and Materials Science
| |
Collapse
|
28
|
Sun Y, Wang X, Zhang WC, Wu X. Mesoporous Co–Mo–S nanosheet networks as cathode materials for flexible electrochemical capacitors. CrystEngComm 2021. [DOI: 10.1039/d1ce01186c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we synthesized numerous Co–Mo–S nanosheet networks as electrode materials by a two-step hydrothermal strategy. It delivers a specific capacity of 510 C g−1 at 1 A g−1.
Collapse
Affiliation(s)
- Yuchen Sun
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China
| | - Xiaowei Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China
| | - Wei-chao Zhang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Xiang Wu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China
| |
Collapse
|
29
|
Hu X, Liu S, Chen Y, Jiang J, Cong H, Tang J, Sun Y, Han S, Lin H. Rational design of flower-like cobalt–manganese-sulfide nanosheets for high performance supercapacitor electrode materials. NEW J CHEM 2020. [DOI: 10.1039/d0nj01727b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The design and development of composite materials with novel structures is one of the effective ways to enhance the electrochemical properties of supercapacitors.
Collapse
Affiliation(s)
- Xiaomin Hu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| | - Shunchang Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| | - Yukai Chen
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| | - Jibo Jiang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| | - Haishan Cong
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| | - Jiabin Tang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| | - Yaoxin Sun
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| | - Sheng Han
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| | - Hualin Lin
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| |
Collapse
|