1
|
Feng C, Chen M, Zhou Y, Xie Z, Li X, Xiaokaiti P, Kansha Y, Abudula A, Guan G. High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis. J Colloid Interface Sci 2023; 645:724-734. [PMID: 37172482 DOI: 10.1016/j.jcis.2023.04.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/15/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Creating electrocatalysts with high activity and stability to meet the needs of highly effective seawater splitting is of great importance to achieve the goal of hydrogen production from abundant seawater source, which however is still challenging owing to sluggish oxygen evolution reaction (OER) dynamics and the existed competitive chloride evolution reaction. Herein, high-entropy (NiFeCoV)S2 porous nanosheets are uniformly fabricated on Ni foam via a hydrothermal reaction process with a sequential sulfurization step for alkaline water/seawater electrolysis. The obtained rough and porous nanosheets provide large active surface area and exposed more active sites, which can facilitate mass transfer and are conducive to the improvement of the catalytic performance. Combined with the strong synergistic electron modulation effect of multi elements in (NiFeCoV)S2, the as-fabricated catalyst exhibits low OER overpotentials of 220 and 299 mV at 100 mA cm-2 in alkaline water and natural seawater, respectively. Besides, the catalyst can withstand a long-term durability test for more than 50 h without hypochlorite evolution, showing excellent corrosion resistance and OER selectivity. By employing the (NiFeCoV)S2 as the electrocatalyst for both anode and cathode to construct an overall water/seawater splitting electrolyzer, the required cell voltages are only 1.69 and 1.77 V to reach 100 mA cm-2 in alkaline water and natural seawater, respectively, showing a promising prospect towards the practical application for efficient water/seawater electrolysis.
Collapse
Affiliation(s)
- Changrui Feng
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Meng Chen
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Yifan Zhou
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan; Graduate School of Sustainable Community Studies, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, China
| | - Xiumin Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | | | - Yasuki Kansha
- Organization for Programs on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan.
| | - Guoqing Guan
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan; Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan; Graduate School of Sustainable Community Studies, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan.
| |
Collapse
|
3
|
Construction of advanced zeolitic imidazolate framework derived cobalt sulfide/MXene composites as high-performance electrodes for supercapacitors. J Colloid Interface Sci 2022; 615:282-292. [DOI: 10.1016/j.jcis.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
|
4
|
Shang K, Gao J, Yin X, Ding Y, Wen Z. An Overview of Flexible Electrode Materials/Substrates for Flexible Electrochemical Energy Storage/Conversion Devices. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kezheng Shang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiyuan Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ximeng Yin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Yichun Ding
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry Fuzhou University Fuzhou 350002 China
| |
Collapse
|
5
|
Yang L, Wang J, Lü H, Hui N. Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection. Mikrochim Acta 2021; 188:25. [PMID: 33404773 DOI: 10.1007/s00604-020-04673-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
A dual-sensing platform is proposed based on multi-walled carbon nanotubes/Prussian blue-functionalized polypyrrole nanowire array (PPY/MWCNTs/PB). Highly aligned PPY nanowire arrays were electrochemically prepared on the surface of glassy carbon electrodes, which were doped with MWCNTs/PB nanocomposites. The nanomaterial combines the characteristics of the PPY nanowires (high conductivity and large specific surface area) and MWCNTs/PB (excellent catalytic performance and intrinsic redox activity). Owing to the nanowire microstructure and outstanding electrical properties, the PPY/MWCNTs/PB nanowire arrays show excellent electrocatalysis of the reduction of hydrogen peroxide and facilitate the construction of a high-performance biosensing platform for microRNA (miRNA). A linear relationship between analytical signal and concentration of hydrogen peroxide and miRNA was obtained in the range 5 to 503 µM (1.4-5.1 mM) and 0.1 pM to 1 nM, and detection limits of 1.7 μM and 33.4 fM, respectively. This new supersensitive sensing platform has broad application prospects of biomolecule and other analyte determination in drug, biomedical, plant protection, and environmental analysis. Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays (PPY/MWCNTs/PB) were prepared by a facile one-step electrochemical method. PPY/MWCNTs/PB nanowire arrays show excellent electrocatalysis of the reduction of H2O2 and facilitate the construction of a high-performance biosensing platform for microRNA.
Collapse
Affiliation(s)
- Lili Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiasheng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haitao Lü
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ni Hui
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|