1
|
Lu J, Guo Y, Shan X, Song Y, Li R, Tian L, Li X. Solid electrochemiluminescence sensor by immobilization luminol in Zn-Co-ZIF CNFs for sensitive detection of procymidone in vegetables. Mikrochim Acta 2024; 191:508. [PMID: 39102114 DOI: 10.1007/s00604-024-06582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
A solid-state electrochemiluminescence (ECL) sensor was fabricated by immobilizing luminol, a classical luminescent reagent, on a Zn-Co-ZIF carbon fiber-modified electrode for the rapid and sensitive detection of procymidone (PCM) in vegetable samples. The sensor was created by sequentially modifying the glassy carbon electrode with Zn-Co-ZIF carbon fiber (Zn-Co-ZIF CNFs), Pt@Au NPs, and luminol. Zn-Co-ZIF CNFs, prepared through electrospinning and high-temperature pyrolysis, possessed a large specific surface area and porosity, making it suitable as carrier and electron transfer accelerator in the system. Pt@Au NPs demonstrated excellent catalytic activity, effectively enhancing the generation of active substances. The ECL signal was significantly amplified by the combination of Zn-Co-ZIF CNFs and Pt@Au NPs, which can subsequently be diminished by procymidone. The ECL intensity decreased proportionally with the addition of procymidone, displaying a linear relationship within the concentration range 1.0 × 10-13 to 1.0 × 10-6 mol L-1 (R2 = 0.993). The sensor exhibited a detection limit of 3.3 × 10-14 mol L-1 (S/N = 3) and demonstrated outstanding reproducibility and stability, making it well-suited for the detection of procymidone in vegetable samples.
Collapse
Affiliation(s)
- Juan Lu
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China.
- Technological Innovation Laboratory for Research and Development of Economic Plants and Edible and Medicinal Fungi in Cold Region of Jilin Province, Changchun, 130032, P.R. China.
| | - Yanjia Guo
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Xiangyu Shan
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Yujia Song
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Ruidan Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Xuwen Li
- College of Chemistry, Jilin University, Changchun, 130022, P.R. China.
| |
Collapse
|
2
|
Wu H, Lu Y, Han H, Yan Z, Chen J. Solid-State Electrolytes by Electrospinning Techniques for Lithium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309801. [PMID: 38528431 DOI: 10.1002/smll.202309801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Solid-state lithium batteries (SSLBs) are regarded as next-generation energy storage devices because of their advantages in terms of safety and energy density. However, the poor interfacial compatibility and low ionic conductivity seriously hinder their development. Electrospinning is considered as a promising method for fabricating solid-state electrolytes (SSEs) with controllable nanofiber structures, scalability, and cost-effectiveness. Numerous efforts are dedicated to electrospinning SSEs with high ionic conductivity and strong interfacial compatibility, but a comprehensive summary is lacking. Here, the history of electrospinning SSEs is overeviewed and introduce the electrospinning mechanism, followed by the manipulation of electrospun nanofibers and their utilization in SSEs, as well as various methods to improve the ionic conductivity of SSEs. Finally, new perspectives aimed at enhancing the performance of SSEs membranes and facilitating their industrialization are proposed. This review aims to provide a comprehensive overview and future perspective on electrospinning technology in SSEs, with the goal of guiding the further development of SSLBs.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Lu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Haoqin Han
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Xia J, Xu P, Wang W, Hu P, Sun Y, Shao J. Carbon Nanofiber-Based Sandwich Free-Standing Cathode for High-Performance Lithium-Sulfur Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39013153 DOI: 10.1021/acs.langmuir.4c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Challenges including rapid capacity degradation and reduced Coulombic efficiency due to the shuttle effect have hindered the commercial viability of lithium-sulfur (Li-S) batteries. A novel sandwich-structured electrode with an optimized electrode structure and current collector interface design was presented as a free-standing positive electrode for Li-S batteries. Fabricated via a simple slurry coating process, the electrode embedded multiwalled carbon nanotubes within carbon nanofiber composite films (PCNF/T). Owing to the superior conductivity and reduced weight in comparison to both carbon nanofibers (PCNF) and the conventional aluminum foil current collector (Al), the PCNF/T electrode exhibited diminished polarization and accelerated redox reaction kinetics. Thus, it delivers an initial discharge capacity of 990.23 mA h g-1 at 0.5 C. Even after 400 cycles, while retains a reversible capacity of 707.45 mA h g-1, corresponding to a minimal capacity degradation rate of merely 0.07% per cycle. Notably, the electrode exhibits a capacity retention of 619.81 mA h g-1 after 400 cycles at 1 C, with a capacity decay rate of only 0.08% per cycle. This study presents an innovative approach to developing a new free-standing cathode for high-performance Li-S batteries.
Collapse
Affiliation(s)
- Jiaojiao Xia
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Peng Xu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
- Teaching and Scientific Research Center, Guizhou Qiannan Economic College, Qiannan 550600, China
| | - Wei Wang
- Contemporary Amperex Technology Co., Limited, Ningde 352000, China
| | - Pingping Hu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou Uniersity and Technology, Suzhou 215009, China
| | - Jiaojing Shao
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Liu H, Ma C, Zhang C, Zhang W, Deng Y, Sun H, Shen X, Yao S. Hybrid Membrane Composed of Nickel Diselenide Nanosheets with Carbon Nanotubes for Catalytic Conversion of Polysulfides in Lithium-Sulfur Batteries. Chemistry 2024; 30:e202303157. [PMID: 38019179 DOI: 10.1002/chem.202303157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
Lithium-sulfur batteries demonstrate enormous energy density are promising forms of energy storage. Unfortunately, the slow redox kinetics and polysulfides shuttle effect are some of the factors that prevent the its development. To address these issues, the hybrid membrane with combination of nickel diselenide nanosheets modified carbon nanotubes (NSN@CNTs) and utilized Li2 S6 catholyte for lithium sulfur battery. The conductive CNTs facilitates fast electronic/ionic transport, while the polarity of NSN as a strong affinity to lithium polysulfides, effectively anchoring them, facilitating the redox conversion of polysulfide species, and effectively diminishing reaction barriers. The cell with NSN@CNTs delivers the first discharge capacity of 1123.8 mAh g-1 and maintains 786.5 mAh g-1 after 300 cycles (0.2 C) at the sulfur loading 5.4 mg. Its rate capability is commendable, enabling it to sustain a capacity of 559.8 mAh g-1 even at a high discharge rate of 2 C. In addition, its initial discharge capacity can remain 8.33 mAh even at 10.8 mg for duration of 100 cycles. This research indicates the potential application of NSN@CNTs hybrid materials in lithium-sulfur batteries.
Collapse
Affiliation(s)
- Hongtao Liu
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Cuijuan Zhang
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Wenwen Zhang
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yuge Deng
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Huayu Sun
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiangqian Shen
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shanshan Yao
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
5
|
Hu X, Huang T, Zhang G, Lin S, Chen R, Chung LH, He J. Metal-organic framework-based catalysts for lithium-sulfur batteries. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Li Z, Zhao X, Hu J, Yuan X, Qin Y, Wang C, Chen M, Peng Y, Ahn JH, Deng Z. Orchestrating Multiple Cobalt Compounds via a Unique Dual-templating Design towards Enhanced Sulfur Conversion Kinetics. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Fang M, Huang Q, Ma L, Xu J, Kang Q, Cao Y, Hu S, Zhang X, Niu D. Hierarchical porous carbon nanofibers embedded with ultrafine Nb2O5 nanocrystals for polysulfide-trapping-conversion Li-S batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Shan X, Lu J, Wu Q, Sun Z, Zhang X, Li C, Yang S, Li H, Tian L. Solid-state electrochemiluminescence sensor based on the carbon fibers derived from ZIFs-containing electrospun fibers for chlorpyrifos detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Bharti VK, Pathak AD, Sharma CS, Khandelwal M. Flexible and free-standing bacterial cellulose derived cathode host and separator for lithium-sulfur batteries. Carbohydr Polym 2022; 293:119731. [DOI: 10.1016/j.carbpol.2022.119731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
|
10
|
Zhang W, Zhao K, Jin Q, Xiao J, Lu H, Zhang X, Wu L. CoS2-NC@CNTs hierarchical nanostructures for efficient polysulfide regulation in lithium-sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Yu H, Bi M, Zhang C, Zhang T, Zhang X, Liu H, Mi J, Shen X, Yao S. Bifunctional hydrogen-bonding cross-linked polymeric binder for high sulfur loading cathodes in lithium/sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Bharti VK, Pathak AD, Sharma CS, Khandelwal M. Ultra-high-rate lithium-sulfur batteries with high sulfur loading enabled by Mn2O3-carbonized bacterial cellulose composite as a cathode host. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Hybrid of spinel zinc-cobalt oxide nanospheres combined with nitrogen-containing carbon nanofibers as advanced electrocatalyst for redox reaction in lithium/polysulfides batteries. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
He B, Zhang Q, Pan Z, Li L, Li C, Ling Y, Wang Z, Chen M, Wang Z, Yao Y, Li Q, Sun L, Wang J, Wei L. Freestanding Metal-Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chem Rev 2022; 122:10087-10125. [PMID: 35446541 PMCID: PMC9185689 DOI: 10.1021/acs.chemrev.1c00978] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Metal–organic
frameworks (MOFs) have recently emerged as
ideal electrode materials and precursors for electrochemical energy
storage and conversion (EESC) owing to their large specific surface
areas, highly tunable porosities, abundant active sites, and diversified
choices of metal nodes and organic linkers. Both MOF-based and MOF-derived
materials in powder form have been widely investigated in relation
to their synthesis methods, structure and morphology controls, and
performance advantages in targeted applications. However, to engage
them for energy applications, both binders and additives would be
required to form postprocessed electrodes, fundamentally eliminating
some of the active sites and thus degrading the superior effects of
the MOF-based/derived materials. The advancement of freestanding electrodes
provides a new promising platform for MOF-based/derived materials
in EESC thanks to their apparent merits, including fast electron/charge
transmission and seamless contact between active materials and current
collectors. Benefiting from the synergistic effect of freestanding
structures and MOF-based/derived materials, outstanding electrochemical
performance in EESC can be achieved, stimulating the increasing enthusiasm
in recent years. This review provides a timely and comprehensive overview
on the structural features and fabrication techniques of freestanding
MOF-based/derived electrodes. Then, the latest advances in freestanding
MOF-based/derived electrodes are summarized from electrochemical energy
storage devices to electrocatalysis. Finally, insights into the currently
faced challenges and further perspectives on these feasible solutions
of freestanding MOF-based/derived electrodes for EESC are discussed,
aiming at providing a new set of guidance to promote their further
development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore
| | - Lei Li
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chaowei Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, China
| | - Ying Ling
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Mengxiao Chen
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yagang Yao
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore.,Institute of Materials Research and Engineering, A*Star, Singapore 138634, Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
15
|
Liu BT, Li H, Shi C, Sun J, Xiao S, Pang Y, Yang J, Li Y. Multifunctional integrated VN/V 2O 5 heterostructure sulfur hosts for advanced lithium-sulfur batteries. NANOSCALE 2022; 14:4557-4565. [PMID: 35244119 DOI: 10.1039/d1nr08292b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lithium-sulfur (Li-S) batteries show great potential in future electric transportation and large-scale grid storage applications because of their attractive theoretical energy density (2600 W h kg-1) and relatively abundant sulfur reserves. However, the rapid capacity decay and unsatisfactory sulfur loading caused by the lithium polysulphide (LiPS) dissolution and low electrical conductivity of sulfur are the most urgent issues plaguing its practical applications. Herein, we report a multifunctional nanoporous (NP) VN/V2O5 binary host that can efficiently resolve the above conflicts by the synergy between the functions of two materials. The inner V2O5 facilitates rapid trapping of numerous LiPSs while the outer porous VN with abundant NP channels offers high conductivity and mild chemisorption, thereby improving the localization and catalytic conversion ability of LiPSs. Accordingly, the designed cathodes with 1.87 mg cm-2 sulfur content achieve an acceptable areal specific capacity (2.72 mA h cm-2), excellent rate capability (963 mA h g-1 at 5.0C), and cycling stability. Remarkably, the cathodes with ultrahigh sulfur loading of 9.02 mg cm-2 deliver a satisfactory areal specific capacity (12.12 mA h cm-2) and still maintain excellent durability.
Collapse
Affiliation(s)
- Bo-Tian Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
- Guangdong Institute of Semiconductor Industrial Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Huan Li
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Chenglong Shi
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Junlong Sun
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Shunhua Xiao
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Youyong Pang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Jianwen Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Yanwei Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
16
|
Wang H, Du X, Li J, Zhang Z, Liu G. CoSn Alloy-based three-dimensional ordered multistage porous composite towards effective polysulfide confinement and catalytic conversion in lithium‐sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Nanoscale CuFe
2
O
4
Uniformly Decorated on Nitrogen‐Doped Carbon Nanofibers as Highly Efficient Catalysts for Polysulfide Conversion in Lithium‐Sulfur Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202101331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Xu Q, Wu C, Sun X, Liu H, Yang H, Hu H, Wu M. Flexible electrodes with high areal capacity based on electrospun fiber mats. NANOSCALE 2021; 13:18391-18409. [PMID: 34730603 DOI: 10.1039/d1nr05681f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ever-growing portable, flexible, and wearable devices impose new requirements from power sources. In contrast to gravitational metrics, areal metrics are more reliable performance indicators of energy storage systems for portable and wearable devices. For energy storage devices with high areal metrics, a high mass loading of the active species is generally required, which imposes formidable challenges on the current electrode fabrication technology. In this regard, integrated electrodes made by electrospinning technology have attracted increasing attention due to their high controllability, excellent mechanical strength, and flexibility. In addition, electrospun electrodes avoid the use of current collectors, conductive additives, and polymer binders, which can essentially increase the content of the active species in the electrodes as well as reduce the unnecessary physically contacted interfaces. In this review, the electrospinning technology for fabricating flexible and high areal capacity electrodes is first highlighted by comparing with the typical methods for this purpose. Then, the principles of electrospinning technology and the recent progress of electrospun electrodes with high areal capacity and flexibility are elaborately discussed. Finally, we address the future perspectives for the construction of high areal capacity electrodes using electrospinning technology to meet the increasing demands of flexible energy storage systems.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Chenghao Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xitong Sun
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Haiyan Liu
- New Energy Division, ShanDong Energy Group CO., LTD, Zoucheng 273500, China
| | - Hao Yang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
19
|
He Y, Yao S, Bi M, Yu H, Majeed A, Shen X. Fabrication of ultrafine ZnFe2O4 nanoparticles decorated on nitrogen doped carbon nanofibers composite for efficient adsorption/electrocatalysis effect of lithium-sulfur batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Yao S, He Y, Wang Y, Bi M, Liang Y, Majeed A, Yang Z, Shen X. Porous N-doped carbon nanofibers assembled with nickel ferrite nanoparticles as efficient chemical anchors and polysulfide conversion catalyst for lithium-sulfur batteries. J Colloid Interface Sci 2021; 601:209-219. [PMID: 34087590 DOI: 10.1016/j.jcis.2021.05.125] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022]
Abstract
Lithium-sulfur (Li-S) batteries are deemed to have great prospects in the next generation advanced energy storage systems and have been considered in recent years. However, the majority of substrates with both high electronic conductivity and full coverage of adsorption-catalysis synergy are difficult to achieve. Herein, nitrogen functionalized porous carbon nanofibers assembled with nickel ferrite nanoparticles (NFO/NCFs) are successfully prepared by electrospinning combined with hydrothermal treatment, which were applied to current collector containing Li2S6 catholyte and binder-free for Li-S batteries. With its abundant active sites, the NFO/NCFs have a vital role in the adsorption and catalysis of the polysulfides, which further accelerate the redox kinetics. Consequently, Li2S6 catholyte impregnated NFO/NCFs electrode (sulfur loading: 5.09 mg cm-2) exhibits the first discharge capacity of 997 mAh g-1 and maintains at 637 mAh g-1 after 350 cycles at 0.2C, which is superior cycling performance than NCFs. Even at 10.2 mg cm-2 sulfur loading, the composite electrode shows a high area capacity of 8.35 mAh cm-2 at 0.1C and retains 6.01 mAh cm-2 after 150 cycles. The results suggest the multifunction NFO/NCFs that anchor effectively and catalysis are beneficial to realize the goal of the large-scale application for Li-S batteries.
Collapse
Affiliation(s)
- Shanshan Yao
- Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yanping He
- Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Youqiang Wang
- Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mingzhu Bi
- Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yazhou Liang
- Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Arslan Majeed
- Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zuolei Yang
- Jiangsu Shunhang Electronic Technology, Zhangjiagang 215600, PR China
| | - Xiangqian Shen
- Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
21
|
A Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials for Supercapacitors. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2020017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The development of smart negative electrode materials with high capacitance for the uses in supercapacitors remains challenging. Although several types of electrode materials with high capacitance in energy storage have been reported, carbon-based materials are the most reliable electrodes due to their high conductivity, high power density, and excellent stability. The most common complaint about general carbon materials is that these electrode materials can hardly ever be used as free-standing electrodes. Free-standing carbon-based electrodes are in high demand and are a passionate topic of energy storage research. Electrospun nanofibers are a potential candidate to fill this gap. However, the as-spun carbon nanofibers (ECNFs) have low capacitance and low energy density on their own. To overcome the limitations of pure CNFs, increasing surface area, heteroatom doping and metal doping have been chosen. In this review, we introduce the negative electrode materials that have been developed so far. Moreover, this review focuses on the advances of electrospun nanofiber-based negative electrode materials and their limitations. We put forth a future perspective on how these limitations can be overcome to meet the demands of next-generation smart devices.
Collapse
|
22
|
Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review. ENERGIES 2021. [DOI: 10.3390/en14092649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rechargeable power sources are an essential element of large-scale energy systems based on renewable energy sources. One of the major challenges in rechargeable battery research is the development of electrode materials with good performance and low cost. Carbon-based materials have a wide range of properties, high electrical conductivity, and overall stability during cycling, making them suitable materials for batteries, including stationary and large-scale systems. This review summarizes the latest progress on materials based on elemental carbon for modern rechargeable electrochemical power sources, such as commonly used lead–acid and lithium-ion batteries. Use of carbon in promising technologies (lithium–sulfur, sodium-ion batteries, and supercapacitors) is also described. Carbon is a key element leading to more efficient energy storage in these power sources. The applications, modifications, possible bio-sources, and basic properties of carbon materials, as well as recent developments, are described in detail. Carbon materials presented in the review include nanomaterials (e.g., nanotubes, graphene) and composite materials with metals and their compounds.
Collapse
|
23
|
Saroha R, Ahn JH, Cho JS. A short review on dissolved lithium polysulfide catholytes for advanced lithium-sulfur batteries. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0729-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Zhou H, Song Y. Fabrication of Silver Mesh/Grid and Its Applications in Electronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3493-3511. [PMID: 33440929 DOI: 10.1021/acsami.0c18518] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the development of flexible electronics, researchers have endeavored to improve the characteristics of the commonly used indium tin oxide such as brittleness, poor mechanical or chemical stability, and scarcity. Currently, many alternative materials have been considered such as conductive polymers, graphene, carbon nanotubes, metallic nanoparticles (NPs), nanowires (NWs), or nanofibers. Among them, silver (Ag) mesh/grid NPs or NWs have been considered as an excellent substitute due to the good transmittance, excellent electrical conductivity, outstanding mechanical robustness, and cost competitiveness. So far, much effort has been devoted to the fabrication of Ag mesh/grid, and many methods such as printing technology, self-assembly, electrospun, hot-pressing, and atomic layer deposition have been reported. Here printing technologies include jet printing, gravure printing, screen printing, nanoimprint lithography, microcontact printing, and flexographic printing. The solution-based self-assembly usually combines with coating, template, or mask assistance. This review summarizes the characteristics of these fabrication methods for the Ag mesh/grid with its related applications in electronics. Then the prospect and challenges of the fabrication methods are discussed, and the new preparation approaches and applications of the Ag mesh/grid are highlighted, which will be of significance for the applications in electronics such as transparent conducting electrodes, organic light-emitting diode, energy harvester, strain sensor, cells, etc.
Collapse
Affiliation(s)
- Haihua Zhou
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
25
|
Chen Z, Liao A, Guo Z, Yu F, Mei T, Zhang Z, Irshad MS, Liu C, Yu L, Wang X. A controllable flower-like FeMoO4/FeS2/Mo2S3 composite as efficient sulfur host for lithium-sulfur batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136561] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Abstract
A review with 132 references. Societal and regulatory pressures are pushing industry towards more sustainable energy sources, such as solar and wind power, while the growing popularity of portable cordless electronic devices continues. These trends necessitate the ability to store large amounts of power efficiently in rechargeable batteries that should also be affordable and long-lasting. Lithium-sulfur (Li-S) batteries have recently gained renewed interest for their potential low cost and high energy density, potentially over 2600 Wh kg−1. The current review will detail the most recent advances in early 2020. The focus will be on reports published since the last review on Li-S batteries. This review is meant to be helpful for beginners as well as useful for those doing research in the field, and will delineate some of the cutting-edge adaptations of many avenues that are being pursued to improve the performance and safety of Li-S batteries.
Collapse
|