1
|
Kholafazadehastamal G, Erk N, Genc AA, Erbas Z, Soylak M. Glassy carbon electrodes modified with graphitic carbon nitride nanosheets and CoNiO 2 bimetallic oxide nanoparticles as electrochemical sensor for Sunitinib detection in human fluid matrices and pharmaceutical samples. Mikrochim Acta 2024; 191:527. [PMID: 39120802 DOI: 10.1007/s00604-024-06605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
A sophisticated electrochemical sensor is presented employing a glassy carbon electrode (GCE) modified with a novel composite of synthesized graphitic carbon nitride (g-C3N4) and CoNiO2 bimetallic oxide nanoparticles (g-C3N4/CoNiO2). The sensor's electrocatalytic capabilities for Sunitinib (SUNI) oxidation were demonstrated exceptional performance with a calculated detection limit (LOD) of 52.0 nM. The successful synthesis and integrity of the composite were confirmed through meticulous characterization using various techniques. FT-IR analysis affirmed the successful synthesis of g-C3N4/CoNiO2 by providing insights into its molecular structure. XRD, FE-SEM, SEM-EDX, and BET analyses collectively validated the material's structural integrity, surface morphology, and electrocatalytic performance. Optimization of key analytical parameters, such as loading volume, concentration, electrolyte solution type, and pH, enhanced the electrocatalytic sensing capabilities of g-C3N4/CoNiO2. The synergistic interaction between g-C3N4 and CoNiO2 bimetallic oxide nanoparticles executed the sensor highly effective in the electrical oxidation of SUNI. Across a concentration range of 0.1-83.8 µM SUNI, the anodic peak current exhibited a linear increase with good precision. Application of the newly developed g-C3N4/CoNiO2 system to detect SUNI in a variety of samples, including urine, human serum, and capsule dosage forms, obtained satisfactory recoveries ranging from 97.1 to 103.0%. This methodology offers a novel approach to underscore the potential of the developed sensor for applications in biological and pharmaceutical monitoring.
Collapse
Affiliation(s)
| | - Nevin Erk
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey.
| | - Asena Ayse Genc
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Zeliha Erbas
- Faculty of Sciences, Department of Chemistry, Cankırı Karatekin University, Cankırı, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Ankara, Turkey
| |
Collapse
|
2
|
Yang GD, Liu Y, Ji X, Zhou SM, Wang Z, Sun HZ. Structural Design of 3D Current Collectors for Lithium Metal Anodes: A Review. Chemistry 2024; 30:e202304152. [PMID: 38311589 DOI: 10.1002/chem.202304152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 02/06/2024]
Abstract
Due to the ultrahigh theoretical specific capacity (3860 mAh g-1) and low redox potential (-3.04 V vs. standard hydrogen electrode), Lithium (Li) metal anode (LMA) received increasing attentions. However, notorious dendrite and volume expansion during the cycling process seriously hinder the development of high energy density Li metal batteries. Constructing three-dimensional (3D) current collectors for Li can fundamentally solve the intrinsic drawback of hostless for Li. Therefore, this review systematically introduces the design and synthesis engineering and the current development status of different 3D collectors in recent years (the current collectors are divided into two major parts: metal-based current collectors and carbon-based current collectors). In the end, some perspectives of the future promotion for LMA application are also presented.
Collapse
Affiliation(s)
- Guo-Duo Yang
- National & Local United Engineering Laboratory for Power Batteries, College of Chemistry, Northeast Normal University, 130024, Changchun
| | - Ye Liu
- National & Local United Engineering Laboratory for Power Batteries, College of Chemistry, Northeast Normal University, 130024, Changchun
| | - Xin Ji
- National & Local United Engineering Laboratory for Power Batteries, College of Chemistry, Northeast Normal University, 130024, Changchun
| | - Su-Min Zhou
- National & Local United Engineering Laboratory for Power Batteries, College of Chemistry, Northeast Normal University, 130024, Changchun
| | - Zhuo Wang
- National & Local United Engineering Laboratory for Power Batteries, College of Chemistry, Northeast Normal University, 130024, Changchun
| | - Hai-Zhu Sun
- National & Local United Engineering Laboratory for Power Batteries, College of Chemistry, Northeast Normal University, 130024, Changchun
| |
Collapse
|
3
|
Pan Y, Wang X, Lin H, Xia Q, Jing M, Yuan W, Ming Li C. Three-dimensional Ni foam supported NiCoO 2@Co 3O 4 nanowire-on-nanosheet arrays with rich oxygen vacancies as superior bifunctional catalytic electrodes for overall water splitting. NANOSCALE 2023; 15:14068-14080. [PMID: 37581290 DOI: 10.1039/d3nr02302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Earth abundant transition metal oxide (EATMO)-based bifunctional catalysts for overall water splitting are highly desirable, but their performance is far from satisfactory due to low intrinsic activities of EATMOs toward electrocatalysis of both oxygen and hydrogen evolution reactions and poor electron transfer and transport capabilities. A three-dimensional (3-D) Ni-foam-supported NiCoO2@Co3O4 nanowire-on-nanosheet heterostructured array with rich oxygen vacancies has been synthesized, showing OER activity superior to most reported catalysts and even much higher than Ru and Ir-based ones and HER activity among the highest reported for non-noble-metal-based catalysts. The excellent activities are ascribed to the highly dense, ultrathin nanowire arrays epitaxially grown on an interconnected layered nanosheet array greatly facilitating electron transfer and providing numerous electrochemically accessible active sites and the high content of oxygen vacancies on nanowires greatly promoting OER and HER. When adopted as bifunctional electrodes for overall water splitting, this heterostructure shows an overvoltage (at 10 mA cm-2) lower than most reported electrolyzers and high stability. This work not only creates a 3-D EATMO-based integrated heterostructure as a low-cost, highly efficient bifunctional catalytic electrode for water splitting, but also provides a novel strategy to use unique heteronanostructures with rich surface defects for synergistically enhancing electrocatalytic activities.
Collapse
Affiliation(s)
- Yixiang Pan
- Ningbo Innovation Centre, Zhejiang University, Ningbo 315100, China.
| | - Xiaoyan Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hua Lin
- School of Materials & Energy, Southwest University, Chongqing 400715, China
| | - Qinghua Xia
- Ningbo Innovation Centre, Zhejiang University, Ningbo 315100, China.
| | - Maoxiang Jing
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212000, China
| | - Weiyong Yuan
- Ningbo Innovation Centre, Zhejiang University, Ningbo 315100, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chang Ming Li
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Cui K, Du L, Du W, Cui L, Zhang Y, Chen W, Low CTJ, Zai J. Rational design of hierarchically nanostructured NiTe@CoxSy composites for hybrid supercapacitors with impressive rate capability and robust cycling durableness. J Colloid Interface Sci 2023; 643:292-304. [PMID: 37075538 DOI: 10.1016/j.jcis.2023.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
The hierarchically nanostructured NiTe@CoxSy composites are constructed on a foamed nickel substrate by a two-step electrode preparation process. Structural characterization shows the dense growing of CoxSy nanosheets around NiTe nanorods forms a hierarchical nanostructure which possesses synergetic effects from both compositional and structural complementarity, more pathways for ion/electrolyte transport, richer redox active sites, and better conductivity. Thanks to the rational design of this hierarchical structure, NiTe@CoxSy delivers a high areal capacitance of 7.7F cm-2 at 3 mA cm-2 and achieves the improved capacitance retention of 97.9% after 10,000 cycles. Of particular importance is the successful fabrication of NiTe@CoxSy//activated carbon hybrid supercapacitors. This hybrid device has a wide operating voltage window, high areal energy density of 0.48 mWh cm-2 at 2.55 mW cm-2, impressive rate capability of 62.3% even after a 20-fold increase of the current density, and a 115.1% of initial capacitance retention after 15,000 cycles. Meanwhile, two tandem such hybrid devices can easily drive a pair of mini fans or light up a heart-like pattern assembled by 10 red LEDs. These experimental results not only demonstrate that the hierarchically nanostructured NiTe@CoxSy composites can serve as a prospective candidate electrode; but also develop a novel strategy about how to achieve high-performance stockpile equipment by rationale designing a desirable nanostructures.
Collapse
Affiliation(s)
- Keying Cui
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China; College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lange Du
- College of International Education, Henan Normal University, Xinxiang, Henan 453002, China
| | - Weimin Du
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China.
| | - Lili Cui
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Yufan Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Weiling Chen
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Chee Tong John Low
- Warwick Electrochemical Engineering Group, Energy Innovation Centre, WMG, University of Warwick, Coventry CV4 7AL, UK
| | - Jiantao Zai
- School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Xiang D, Hao X, Yang X, Jin Z. Construction of Zn Vacancy mediated ZnS/Cu2-xS heterostructure via Cation Exchange Reactions for Broadband Photocatalytic Water Splitting. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Harikumar B, Okla MK, Alaraidh IA, Mohebaldin A, Soufan W, Abdel-Maksoud MA, Aufy M, Thomas AM, Raju LL, Khan SS. Robust visible light active CoNiO 2-BiFeO 3-NiS ternary nanocomposite for photo-fenton degradation of rhodamine B and methyl orange: Kinetics, degradation pathway and toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115321. [PMID: 35751232 DOI: 10.1016/j.jenvman.2022.115321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Sustainable wastewater treatment is crucial to remediate the water pollutants through the development of highly efficient, low-cost and separation free photocatalyst. The aim of this study is to construct a novel CoNiO2-BiFeO3-NiS ternary nanocomposite (NCs) for the efficient degradation of organic pollutants by utilising visible light. The NCs was characterized by various physiochemical techniques, including HR-TEM, SEM, XPS, FT-IR, ESR, EIS, PL, UV-visible DRS, and N2 adsorption and desorption analysis. The photocatalyst exhibits extraordinary degradation efficiency towards MO (99.8%) and RhB (97.8%). The intermediates were determined using GC-MS analysis and the degradation pathway was elucidated. The complete mineralization was further confirmed by TOC analysis. The CoNiO2-BiFeO3-NiS ternary NCs have shown excellent photostability, structural stability and reusability even after six cycles and it is confirmed by XRD and XPS analysis. The kinetic study reveals that the photodegradation of the dyes follows first order reaction. The influence of different pH, dye concentrations and NCs dosages were investigated. The intermediate toxicity was predicted by computational stimulation using ECOSAR software. The NCs shows promising potential for ecological safety which demonstrates its practical application in the treatment of waste water pollutants in large scale.
Collapse
Affiliation(s)
- B Harikumar
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Asmaa Mohebaldin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
7
|
Modifying surface of Ni foam via hierarchical lithiophilic nanoarrays for stable lithium metal anodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Wang F, Du J, Zhou H, Chang N, Kang J, Wang X, Du X. Controllable growth of flower-like hierarchical CoNiO2 nanoflakes anchored on Nitinol fiber substrate with good selectivity for highly efficient solid-phase microextraction of polycyclic aromatic hydrocarbons in water. Anal Chim Acta 2022; 1192:339371. [DOI: 10.1016/j.aca.2021.339371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/01/2022]
|
9
|
Asen P, Esfandiar A, Mehdipour H. Urchin-like hierarchical ruthenium cobalt oxide nanosheets on Ti 3C 2T x MXene as a binder-free bifunctional electrode for overall water splitting and supercapacitors. NANOSCALE 2022; 14:1347-1362. [PMID: 35014999 DOI: 10.1039/d1nr07145a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthesizing efficient electrode materials for water splitting and supercapacitors is essential for developing clean electrochemical energy conversion/storage devices. In the present work, we report the construction of a ruthenium cobalt oxide (RuCo2O4)/Ti3C2Tx MXene hybrid by electrophoretic deposition of Ti3C2Tx MXene on nickel foam (NF) followed by RuCo2O4 nanostructure growth through an electrodeposition process. Owing to the strong interactions between RuCo2O4 and Ti3C2Tx sheets, which are verified by density functional theory (DFT)-based simulations, RuCo2O4/Ti3C2Tx MXene@NF can serve as a bifunctional electrode for both water splitting and supercapacitor applications. This electrode exhibits outstanding electrocatalytic activity with low overpotentials of 170 and 68 mV at 100 A m-2 toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The RuCo2O4/Ti3C2Tx MXene@NF-based alkaline water-splitting cell only requires 1.62 V to achieve a current density of 100 A m-2, which is much better than that of RuO2@NF and Pt/C@NF-assembled cells (1.75 V@100 A m-2). The symmetric supercapacitor (SSC)-assembled electrode displays a high specific capacitance of 229 F g-1 at 3 A g-1. The experimental results, complemented with theoretical insights, provide an effective strategy to prepare multifunctional materials for electrocatalysis and energy storage applications.
Collapse
Affiliation(s)
- Parvin Asen
- Department of Physics, Sharif University of Technology, Azadi Street, 11365-9161, Tehran, Iran.
| | - Ali Esfandiar
- Department of Physics, Sharif University of Technology, Azadi Street, 11365-9161, Tehran, Iran.
| | - Hamid Mehdipour
- Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Ni-decorated Fe-/N- co-doped carbon anchored on porous cobalt oxide nanowires arrays for efficient electrocatalytic oxygen evolution. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Guan Y, Liu Y. Pt modified Ni–Mo-based hydrates as bifunctional electrocatalysts for overall water splitting. NEW J CHEM 2021. [DOI: 10.1039/d1nj02046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt-Modified Ni–Mo-based nanomaterials were prepared by a simple and effective method.
Collapse
Affiliation(s)
- Yayu Guan
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
- Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yuyu Liu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|