1
|
Meyer Q, Yang C, Cheng Y, Zhao C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-023-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractProton exchange membrane fuel cells (PEMFCs) are becoming a major part of a greener and more sustainable future. However, the costs of high-purity hydrogen and noble metal catalysts alongside the complexity of the PEMFC system severely hamper their commercialization. Operating PEMFCs at high temperatures (HT-PEMFCs, above 120 °C) brings several advantages, such as increased tolerance to contaminants, more affordable catalysts, and operations without liquid water, hence considerably simplifying the system. While recent progresses in proton exchange membranes for HT-PEMFCs have made this technology more viable, the HT-PEMFC viscous acid electrolyte lowers the active site utilization by unevenly diffusing into the catalyst layer while it acutely poisons the catalytic sites. In recent years, the synthesis of platinum group metal (PGM) and PGM-free catalysts with higher acid tolerance and phosphate-promoted oxygen reduction reaction, in conjunction with the design of catalyst layers with improved acid distribution and more triple-phase boundaries, has provided great opportunities for more efficient HT-PEMFCs. The progress in these two interconnected fields is reviewed here, with recommendations for the most promising routes worthy of further investigation. Using these approaches, the performance and durability of HT-PEMFCs will be significantly improved.
Collapse
|
2
|
Mamun A, Kiari M, Sabantina L. A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications. MEMBRANES 2023; 13:830. [PMID: 37888002 PMCID: PMC10608773 DOI: 10.3390/membranes13100830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in dye-sensitized solar cells (DSSCs), membrane electrodes for fuel cells, catalytic applications such as oxygen reduction reactions (ORRs), hydrogen evolution reactions (HERs), and oxygen evolution reactions (OERs), and sensing applications such as biosensors, electrochemical sensors, and chemical sensors, providing a comprehensive insight into energy storage development and applications. This study focuses on the role of electrospun porous carbon nanofiber mats in improving energy storage and generation and contributes to a better understanding of the fabrication process of electrospun porous carbon nanofiber mats. In addition, a comprehensive review of various alternative preparation methods covering a wide range from natural polymers to synthetic carbon-rich materials is provided, along with insights into the current literature.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Mohamed Kiari
- Department of Physical Chemistry, Institute of Materials, University of Alicante, 03080 Alicante, Spain
| | - Lilia Sabantina
- Faculty of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences—HTW Berlin, Hochschule für Technik und Wirtschaft Berlin, 12459 Berlin, Germany
| |
Collapse
|
3
|
He H, Peng H, Li G. Study on water and oxygen transfer characteristics of HT-PEM fuel cells. Heliyon 2023; 9:e19832. [PMID: 37809893 PMCID: PMC10559212 DOI: 10.1016/j.heliyon.2023.e19832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, a steady-state model is developed by combining mechanical, Navier-Stokes, Maxwell-Stefan, and Butler-Volmer equations. This model is then used to investigate the influences of diffusion layer thickness deformation under a specific assembly force on the porosity distribution as an indicator of fuel cell performance. The HT-PEM (high temperature proton exchange membrane) fuel cell model is built using COMSOL Multiphysics software, simulating the changes in diffusion layer porosity under different thicknesses of the diffusion layer, thus analyzing the trends in variation of water and oxygen concentration in the cathode diffusion layer. The battery has different current densities at different operating potentials. The influence of the working potential on the mass transfer concentration and the variation in the mass transfer concentration of the diffusion layer under the different areas of flow channel and flow ridge is discussed. The simulation results have a certain reference value for the optimization of mass transfer in a diffusion layer. The results reveal the combined effect of the assembly force and flow field, which makes the porosity distribution uneven and results in remarkable lateral current in the gas diffusion layer (GDL). The thicker the diffusion layer, the less oxygen consumed, and a large amount of oxygen is retained in the gaseous diffusion layer. It can be concluded that thicker diffusion layer is conducive to more uniform mass transfer and diffusion. These results can potentially be used to promote the performance and application of HT-PEMFC.
Collapse
|
4
|
Skupov KM, Ponomarev II, Vtyurina ES, Volkova YA, Ponomarev II, Zhigalina OM, Khmelenin DN, Cherkovskiy EN, Modestov AD. Proton-Conducting Polymer-Coated Carbon Nanofiber Mats for Pt-Anodes of High-Temperature Polymer-Electrolyte Membrane Fuel Cell. MEMBRANES 2023; 13:membranes13050479. [PMID: 37233540 DOI: 10.3390/membranes13050479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
High-temperature polymer-electrolyte membrane fuel cells (HT-PEM FC) are a very important type of fuel cell since they operate at 150-200 °C, allowing the use of hydrogen contaminated with CO. However, the need to improve stability and other properties of gas diffusion electrodes still hinders their distribution. Anodes based on a mat (self-supporting entire non-woven nanofiber material) of carbon nanofibers (CNF) were prepared by the electrospinning method from a polyacrylonitrile solution followed by thermal stabilization and pyrolysis of the mat. To improve their proton conductivity, Zr salt was introduced into the electrospinning solution. As a result, after subsequent deposition of Pt-nanoparticles, Zr-containing composite anodes were obtained. To improve the proton conductivity of the nanofiber surface of the composite anode and reach HT-PEMFC better performance, dilute solutions of Nafion®, a polymer of intrinsic microporosity (PIM-1) and N-ethyl phosphonated polybenzimidazole (PBI-OPhT-P) were used to coat the CNF surface for the first time. These anodes were studied by electron microscopy and tested in membrane-electrode assembly for H2/air HT-PEMFC. The use of CNF anodes coated with PBI-OPhT-P has been shown to improve the HT-PEMFC performance.
Collapse
Affiliation(s)
- Kirill M Skupov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Igor I Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Elizaveta S Vtyurina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Yulia A Volkova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Ivan I Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, bld. 1, 119334 Moscow, Russia
| | - Olga M Zhigalina
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia
| | - Dmitry N Khmelenin
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia
| | - Evgeny N Cherkovskiy
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia
| | - Alexander D Modestov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky Av. 31, bld. 4., 119071 Moscow, Russia
| |
Collapse
|
5
|
Zhang Z, Xia Z, Huang J, Jing F, Zhang X, Li H, Wang S, Sun G. Uneven phosphoric acid interfaces with enhanced electrochemical performance for high-temperature polymer electrolyte fuel cells. SCIENCE ADVANCES 2023; 9:eade1194. [PMID: 36696498 PMCID: PMC9876549 DOI: 10.1126/sciadv.ade1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Ultrahigh mass transport resistance and excessive coverage of the active sites introduced by phosphoric acid (PA) are among the major obstacles that limit the performance of high-temperature polymer fuel cells, especially compared to their low-temperature counterparts. Here, an alternative strategy of electrode design with fibrous networks is developed to optimize the redistribution of acid within the electrode. Via structural tailoring with varied electrospinning parameters, uneven migration of PA with dispersed droplets is observed, subverting the immersion model of conventional porous electrode. Combining with experimental and calculation results, the microscaled uneven PA interfaces could not only provide extra diffusion pathways for oxygen but also minimize the thickness of PA layers. This electrode architecture demonstrates enhanced electrochemical performance of oxygen reduction within the PA phase, resulting in a 28% enhancement of the maximum power density for the optimally designed electrode as cathode compared to that of a conventional one.
Collapse
Affiliation(s)
- Zinan Zhang
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhangxun Xia
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jicai Huang
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fenning Jing
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoming Zhang
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huanqiao Li
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Suli Wang
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gongquan Sun
- Division of Fuel Cell and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Fuel Cell and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
6
|
Skupov KM, Vtyurina ES, Ponomarev II, Ponomarev II, Aysin RR. Prospective carbon nanofibers based on polymer of intrinsic microporosity (PIM-1): Pore structure regulation for higher carbon sequestration and renewable energy source applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Ponomarev II, Skupov KM, Modestov AD, Lysova AA, Ponomarev II, Vtyurina ES. Cardo Polybenzimidazole (PBI-O-PhT) Based Membrane Reinforced with m-polybenzimidazole Electrospun Nanofiber Mat for HT-PEM Fuel Cell Applications. MEMBRANES 2022; 12:membranes12100956. [PMID: 36295715 PMCID: PMC9610054 DOI: 10.3390/membranes12100956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 05/31/2023]
Abstract
The further development of high temperature polymer electrolyte membrane (HT-PEM) fuel cells largely depends on the improvement of all components of the membrane-electrode assembly (MEA), especially membranes and electrodes. To improve the membrane characteristics, the cardo-polybenzimidazole (PBI-O-PhT)-based polymer electrolyte complex doped with phosphoric acid is reinforced using an electrospun m-PBI mat. As a result, the PBI-O-PhT/es-m-PBInet · nH3PO4 reinforced membrane is obtained with hydrogen crossover values (~0.2 mA cm-2 atm-1), one order of magnitude lower than the one of the initial PBI-O-PhT membrane (~3 mA cm-2 atm-1) during HT-PEM fuel cell operation with Celtec®P1000 electrodes at 180 °C. Just as importantly, the reinforced membrane resistance was very close to the original one (65-75 mΩ cm2 compared to ~60 mΩ cm2). A stress test that consisted of 20 start-stops, which included cooling to the room temperature and heating back to 180 °C, was applied to the MEAs with the reinforced membrane. More stable operation for the HT-PEM fuel cell was shown when the Celtec®P1000 cathode (based on carbon black) was replaced with the carbon nanofiber cathode (based on the pyrolyzed polyacrylonitrile electrospun nanofiber mat). The obtained data confirm the enhanced characteristics of the PBI-O-PhT/es-m-PBInet · nH3PO4 reinforced membrane.
Collapse
Affiliation(s)
- Igor I. Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, bld. 1, 119334 Moscow, Russia
| | - Kirill M. Skupov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, bld. 1, 119334 Moscow, Russia
| | - Alexander D. Modestov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky Av., 31, bld. 4., 119071 Moscow, Russia
| | - Anna A. Lysova
- Kurnakov Institute of General and Inorganic Chemistry, Leninsky Av., 31, 119071 Moscow, Russia
| | - Ivan I. Ponomarev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, bld. 1, 119334 Moscow, Russia
| | - Elizaveta S. Vtyurina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St., 28, bld. 1, 119334 Moscow, Russia
| |
Collapse
|
8
|
Jung HS, Kim DH, Chun H, Pak C. Optimization of fabrication conditions for low-Pt anode using response surface methodology in high-temperature polymer electrolyte membrane fuel cell. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Ponomarev II, Razorenov DY, Ponomarev II, Volkova YA, Skupov KM, Lysova AA, Yaroslavtsev AB, Modestov AD, Buzin MI, Klemenkova ZS. Polybenzimidazoles via polyamidation: A more environmentally safe process to proton conducting membrane for hydrogen HT-PEM fuel cell. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Xia J, Wang C, Wang X, Bi L, Zhang Y. A perspective on DRT applications for the analysis of solid oxide cell electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136328] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Ponomarev II, Skupov KM, Zhigalina OM, Naumkin AV, Modestov AD, Basu VG, Sufiyanova AE, Razorenov DY, Ponomarev II. New Carbon Nanofiber Composite Materials Containing Lanthanides and Transition Metals Based on Electrospun Polyacrylonitrile for High Temperature Polymer Electrolyte Membrane Fuel Cell Cathodes. Polymers (Basel) 2020; 12:E1340. [PMID: 32545725 PMCID: PMC7362175 DOI: 10.3390/polym12061340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022] Open
Abstract
Electrospinning of polyacrylonitrile/DMF dopes containing salts of nickel, cobalt, zirconium, cerium, gadolinium, and samarium, makes it possible to obtain precursor nanofiber mats which can be subsequently converted into carbon nanofiber (CNF) composites by pyrolysis at 1000-1200 °C. Inorganic additives were found to be uniformly distributed in CNFs. Metal states were investigated by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). According to XPS in CNF/Zr/Ni/Gd composites pyrolyzed at 1000 °C, nickel exists as Ni0 and as Ni2+, gadolinium as Gd3+, and zirconium as Zr4+. If CNF/Zr/Ni/Gd is pyrolyzed at 1200 °C, nickel exists only as Ni0. For CNF/Sm/Co composite, samarium is in Sm3+ form when cobalt is not found on a surface. For CNF/Zr/Ni/Ce composite, cerium exists both as Ce4+ and as Ce3+. Composite CNF mats were platinized and tested as cathodes in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). Such approach allows to introduce Pt-M and Pt-MOx into CNF, which are more durable compared to carbon black under HT-PEMFC operation. For CNF/Zr/Ni/Gd composite cathode, higher performance in the HT-PEMFC at I >1.2 A cm-2 is achieved due to elimination of mass transfer losses in gas-diffusion electrode compared to commercial Celtec®P1000.
Collapse
Affiliation(s)
- Igor I. Ponomarev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russia; (K.M.S.); (A.V.N.); (D.Y.R.); (I.I.P.)
| | - Kirill M. Skupov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russia; (K.M.S.); (A.V.N.); (D.Y.R.); (I.I.P.)
| | - Olga M. Zhigalina
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia; (O.M.Z.); (V.G.B.); (A.E.S.)
| | - Alexander V. Naumkin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russia; (K.M.S.); (A.V.N.); (D.Y.R.); (I.I.P.)
| | - Alexander D. Modestov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky Av. 31, bld. 4., 119071 Moscow, Russia;
| | - Victoria G. Basu
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia; (O.M.Z.); (V.G.B.); (A.E.S.)
| | - Alena E. Sufiyanova
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninsky Av. 59, 119333 Moscow, Russia; (O.M.Z.); (V.G.B.); (A.E.S.)
| | - Dmitry Y. Razorenov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russia; (K.M.S.); (A.V.N.); (D.Y.R.); (I.I.P.)
| | - Ivan I. Ponomarev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russia; (K.M.S.); (A.V.N.); (D.Y.R.); (I.I.P.)
| |
Collapse
|