1
|
Martins VHN, Silva MM, Ramos MK, Verdan MH, Neiva EGC, Zarbin AJG, Souza VHR. Thin films based on nanocomposites of crumpled graphene fully decorated with Prussian blue: a new material for aqueous battery systems. NANOSCALE 2025; 17:11353-11365. [PMID: 40230325 DOI: 10.1039/d4nr05272b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
This study involves synthesizing thin films through an interfacial method, which relies on composites of Prussian blue nanoparticles and nanostructures derived from graphene, known as crumpled graphene. The resulting compounds were subjected to evaluation for potential applications in aqueous battery-type energy storage systems. Considering the importance of structure-property relationships and applications, the carbon nanostructures were previously processed to assess their morphological characteristics and electrochemical performance for the growth of Prussian blue nanocubes. To this end, the spray-pyrolysis method was employed, resulting in crumpled graphene infused with β-FeOOH and Fe2O3 (β-iron(III) oxyhydroxide and iron (III) oxide) species. Composites of crumpled graphene and Prussian blue were synthesized through the electrodeposition method via cyclic voltammetry, which formed Prussian blue nanocubes on the surface of crumpled graphene with sizes ranging from 48 to 153 nm depending on the number of cycles. Specific capacity values varied based on the compound structure, with the highest recorded value of 50.4 mA h g-1 at a rate of 500 mA g-1 for the PB_10 composite achieved in an aqueous electrolyte of 0.1 mol L-1 KCl vs. Ag|AgCl (3.0 mol L-1 KCl). The PB_10 electrode was further studied using different electrochemical techniques and employed in a coin cell battery system, demonstrating a discharge capacity of 25.0 mA h g-1 at 250 mA g-1. Additionally, the device retained 97% of its capacity after cycling at various current densities, highlighting its stability.
Collapse
Affiliation(s)
- Vitor H N Martins
- Faculty of Exact Science and Technology, Universidade Federal da Grande Dourados (UFGD), Dourados, MS, Brazil.
| | - Monize M Silva
- Faculty of Exact Science and Technology, Universidade Federal da Grande Dourados (UFGD), Dourados, MS, Brazil.
- Universidade do Estado do Amapá (UEAP), Macapá, AP, Brazil
| | - Maria K Ramos
- Department of Chemistry, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Maria H Verdan
- Faculty of Exact Science and Technology, Universidade Federal da Grande Dourados (UFGD), Dourados, MS, Brazil.
| | - Eduardo G C Neiva
- Department of Chemistry, Universidade Regional de Blumenau (FURB), Blumenau, SC, Brazil
| | - Aldo J G Zarbin
- Department of Chemistry, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Victor H R Souza
- Faculty of Exact Science and Technology, Universidade Federal da Grande Dourados (UFGD), Dourados, MS, Brazil.
| |
Collapse
|
2
|
Li M, Wang C, Wang C, Lyu Y, Wang J, Xia S, Mao J, Guo Z. 10 Years Development of Potassium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416717. [PMID: 39840593 DOI: 10.1002/adma.202416717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Potassium-ion batteries (PIBs), with abundant resources and low cost, are considered as a promising alternative to commercial lithium-ion batteries for low-cost and large-scale applications. Over the past decade, significant academic progresses are made in the development of PIBs, including advancements in cathodes, anodes, and electrolytes. However, most improvements are achieved under laboratory conditions (e.g., K metal-based half-cells and low mass loading of active materials), and the performance of PIBs in full cells is still far from the requirements for commercial applications. A critical insight bridging the academic research and the commercialization of PIBs is urgently needed to guide future research in this field. This review will discuss the challenges and improvement strategies in the development of PIBs, focusing on the potential practical cathodes, anodes, and electrolytes, as well as their performance in full cells. It aims to give the readers a clear and logical understanding of the development of PIBs. The application analysis is also discussed to provide a comprehensive understanding of the commercialization potential of PIBs. Finally, perspectives are provided for the future development of PIBs.
Collapse
Affiliation(s)
- Mingnan Li
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Caoyu Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanqiu Lyu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jingxiu Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shuixin Xia
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jianfeng Mao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Schmidt A, Pereira AF, Zarbin AJG. Tailored Nanoarchitectures: MoS₂/Graphene and MoS 2/Graphene Oxide Thin Films via Liquid-Liquid Interfacial Route. Chem Asian J 2025; 20:e202401036. [PMID: 39393050 DOI: 10.1002/asia.202401036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/13/2024]
Abstract
The nanostructured assembly of different two-dimensional (2D) materials in specific organization is crucial for developing materials with synergistic properties. In this study, we present a general methodology to prepare thin, transparent and self-assembled films of 2D/2D composites based on molybdenum sulfide (MoS2)/graphene oxide (GO) or MoS2/reduced graphene oxide (rGO), through the liquid/liquid interfacial route. Different nanoarchitectures are obtained by changing simple experimental parameters during the thin film preparation steps. The films were characterized by UV-Vis and Raman spectroscopy, scanning electron microscopy and cyclic voltammetry, evidencing that the experimental route used plays a role in the organization and properties of the assembled nanoarchitectures. Likewise, nanostructures of MoS2/GO and MoS2/rGO prepared through the same route have different organizations due to the different interactions between the materials. This showcases the potential of the technique to prepare tailored nanoarchitectures with specific properties for various applications, paving the way for innovative nanotechnology and materials science applications.
Collapse
Affiliation(s)
- Ariane Schmidt
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, 81531-980, Curitiba, PR, Brazil
| | - Amanda F Pereira
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, 81531-980, Curitiba, PR, Brazil
| | - Aldo J G Zarbin
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
4
|
De R, Hermesdorf M, Bera A, Phul R, Gawlik A, Plentz J, Oschatz M, Karadaş F, Dietzek-Ivanšić B. Cyanide Linkage Isomerization Induced by Cobalt Oxidation-State Changes at a Co-Fe Prussian-Blue Analogue/ZnO Interface. Chemistry 2024; 30:e202401708. [PMID: 39140426 DOI: 10.1002/chem.202401708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Understanding the interfacial composition in heterostructures is crucial for tailoring heterogenous electrochemical and photoelectrochemical processes. This work aims to elucidate the structure of a series of Co-Fe Prussian blue analogue modified ZnO (PBA/ZnO) electrodes with interface-sensitive vibrational sum frequency generation (VSFG) spectroscopy. Our measurements revealed, for the first time, a cyanide linkage isomerism at the PBA/ZnO interface, when the composite is fabricated at elevated temperatures. In situ VSFG spectro-electrochemistry measurements correlate the CoII→CoIII oxidation with the flip of the bridging CN ligand from Co-NC-Fe coordination mode to a Co-CN-Fe one. Photoluminescence measurements and X-ray photoelectron spectroscopy reveal that this unprecedented linkage isomerism originates from surface defects, which act as oxidation sites for the PBA. The presence of such surface defects is correlated with the fabrication temperature for PBA/ZnO. Thus, this contribution identifies the interplay between the surface states of the ZnO substrates and the chemical composition of PBA at the ZnO surface, suggesting an easily accessible approach to control the chemical composition of the interface.
Collapse
Affiliation(s)
- Ratnadip De
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Marius Hermesdorf
- Center for Energy and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Institute for Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Anupam Bera
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Ruby Phul
- Department of Chemistry, Main Campus, Bilkent University, 06800, Ankara, Turkey
| | - Annett Gawlik
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Jonathan Plentz
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Martin Oschatz
- Center for Energy and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Institute for Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
| | - Ferdi Karadaş
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department of Chemistry, Main Campus, Bilkent University, 06800, Ankara, Turkey
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Benjamin Dietzek-Ivanšić
- Department of Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
5
|
Yoshida A, Pirabul K, Fujii S, Pan ZZ, Yoshii T, Ito M, Izawa K, Minegishi Y, Noguchi Y, Hiyoshi N, Takeda K, Hasegawa Y, Itoh T, Nishihara H. Contamination-Free Reference Electrode Using Prussian Blue for Small Oxygen Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50115-50124. [PMID: 39161048 DOI: 10.1021/acsami.4c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In recent years, significant attention has been directed toward advancing compact, point-of-care testing (POCT) devices to better deliver patient care and alleviate the burden on the medical care system. Common POCTs, such as blood oxygen sensors, leverage electrochemical sensing in their design. However, conventional electrochemical devices typically use Ag/AgCl reference electrodes, which are likely to release trace amounts of silver ions that contaminate the working electrode, causing rapid deterioration of the devices. This study proposes an effective reference electrode using graphene-coated porous silica spheres (G/PSS) with embedded Prussian blue (PB), denoted PB/G/PSS, designed specifically for small oxygen sensors. PB is a redox species that is an improvement over Ag/AgCl since it is significantly less water-soluble than AgCl. Since PB is an insulator, we dispersed PB in G/PSS, well-conductive mesoporous matrices, to ensure contact between PB clusters and the electrolytes. Moreover, the monodispersed, spherically shaped PB/G/PSS is an advantageous medium for fabricating POCT devices by screen printing. In this study, the open-circuit potential of the PB/G/PSS electrode remained stable within 30 mV for 31 days. The small oxygen sensor assembled through screen printing using PB/G/PSS demonstrated stable operation for several days or more. In contrast, a similar sensor with Ag/AgCl reference electrode rapidly deteriorated within a day. This PB/G/PSS reference electrode with improved stability is expected to be an excellent alternative to the Ag/AgCl system for small electrochemical-based POCT devices.
Collapse
Affiliation(s)
- Akiko Yoshida
- Techno Medica Co., Ltd., Yokohama, Kanagawa 224-0041, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kritin Pirabul
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Shunsuke Fujii
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Takeharu Yoshii
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Mutsuhiro Ito
- Fuji Silysia Chemical Ltd., Kasugai, Aichi 487-0013, Japan
| | - Kenichi Izawa
- Fuji Silysia Chemical Ltd., Kasugai, Aichi 487-0013, Japan
| | - Yuka Minegishi
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | | | - Norihito Hiyoshi
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Kota Takeda
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Yasuhisa Hasegawa
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Tetsuji Itoh
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
6
|
Martins VN, da Silva MM, Gonçalves DA, Presser V, Husmann S, Souza VHR. Freestanding Films of Reduced Graphene Oxide Fully Decorated with Prussian Blue Nanoparticles for Hydrogen Peroxide Sensing. ACS OMEGA 2024; 9:31569-31577. [PMID: 39072102 PMCID: PMC11270561 DOI: 10.1021/acsomega.4c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Developing thin, freestanding electrodes that work simultaneously as a current collector and electroactive material is pivotal to integrating portable and wearable chemical sensors. Herein, we have synthesized graphene/Prussian blue (PB) electrodes for hydrogen peroxide detection (H2O2) using a two-step method. First, an reduced graphene oxide/PAni/Fe2O3 freestanding film is prepared using a doctor blade technique, followed by the electrochemical deposition of PB nanoparticles over the films. The iron oxide nanoparticles work as the iron source for the heterogeneous electrochemical deposition of the nanoparticles in a ferricyanide solution. The size of the PB cubes electrodeposited over the graphene-based electrodes was controlled by the number of voltammetric cycles. For H2O2 sensing, the PB10 electrode achieved the lowest detection and quantification limits, 2.00 and 7.00 μM, respectively. The findings herein evidence the balance between the structure of the graphene/PB-based electrodes with the electrochemical performance for H2O2 detection and pave the path for developing new freestanding electrodes for chemical sensors.
Collapse
Affiliation(s)
- Vitor
H. N. Martins
- Faculty
of Exact Science and Technology, Universidade
Federal da Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | - Monize M. da Silva
- Faculty
of Exact Science and Technology, Universidade
Federal da Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | - Daniel A. Gonçalves
- Faculty
of Exact Science and Technology, Universidade
Federal da Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | - Volker Presser
- INM—Leibniz
Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
- Department
of Materials Science & Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
- Saarene—Saarland
Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Samantha Husmann
- INM—Leibniz
Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
| | - Victor H. R. Souza
- Faculty
of Exact Science and Technology, Universidade
Federal da Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
| |
Collapse
|
7
|
Shu W, Li J, Zhang G, Meng J, Wang X, Mai L. Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries. NANO-MICRO LETTERS 2024; 16:128. [PMID: 38381213 PMCID: PMC10881954 DOI: 10.1007/s40820-024-01355-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024]
Abstract
Aqueous sodium-ion batteries (ASIBs) and aqueous potassium-ion batteries (APIBs) present significant potential for large-scale energy storage due to their cost-effectiveness, safety, and environmental compatibility. Nonetheless, the intricate energy storage mechanisms in aqueous electrolytes place stringent requirements on the host materials. Prussian blue analogs (PBAs), with their open three-dimensional framework and facile synthesis, stand out as leading candidates for aqueous energy storage. However, PBAs possess a swift capacity fade and limited cycle longevity, for their structural integrity is compromised by the pronounced dissolution of transition metal (TM) ions in the aqueous milieu. This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs. The dissolution mechanisms of TM ions in PBAs, informed by their structural attributes and redox processes, are thoroughly examined. Moreover, this study delves into innovative design tactics to alleviate the dissolution issue of TM ions. In conclusion, the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
Collapse
Affiliation(s)
- Wenli Shu
- Department of Physical Science and Technology, School of Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572000, People's Republic of China
| | - Junxian Li
- School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572000, People's Republic of China
| | - Guangwan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572000, People's Republic of China
| | - Jiashen Meng
- School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Xuanpeng Wang
- Department of Physical Science and Technology, School of Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572000, People's Republic of China.
- Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang, 441000, People's Republic of China.
| | - Liqiang Mai
- School of Materials Science and Engineering, State Key Laboratory of Advanced Technology for Materials Synthesis, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572000, People's Republic of China.
- Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang, 441000, People's Republic of China.
| |
Collapse
|
8
|
Martins JB, Husmann S, da Veiga AG, Zarbin AJG, Rocco MLM. Probing the Electronic Structure of Prussian Blue and Analog Films by Photoemission and Electron Energy Loss Spectroscopies. Chemphyschem 2024; 25:e202300590. [PMID: 38093086 DOI: 10.1002/cphc.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2023] [Indexed: 01/17/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) and reflection electron energy loss spectroscopy (REELS) were employed to characterize the electronic properties of Prussian blue (PB) and its analogs when electrodeposited over metal-decorated carbon nanotubes (CNTs). Through an investigation of the influence of carbon nanotubes (CNTs) and preparation conditions on the electronic structure, valuable insights were obtained regarding their effects on electrochemical properties. XPS analysis enabled the probing of the chemical composition and oxidation states of the film materials, unveiling synthesis-driven variations in their electronic properties. REELS provided information on energy loss and electronic transitions, enabling further characterization of the changes in the electronic structure induced by different preparation methods. Such findings emphasize the importance of surface characterization to understand how the unique electronic properties of such materials can be harnessed to enhance their performance and functionality.
Collapse
Affiliation(s)
- Jessica B Martins
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ,21941-909, Brazil
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
| | - Samantha Husmann
- Grupo de Química de Materiais, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-980, Brazil
| | - Amanda G da Veiga
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ,21941-909, Brazil
| | - Aldo J G Zarbin
- Grupo de Química de Materiais, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-980, Brazil
| | - Maria Luiza M Rocco
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ,21941-909, Brazil
| |
Collapse
|
9
|
Li C, Zhu X, Wang D, Yang S, Zhang R, Li P, Fan J, Li H, Zhi C. Fine Tuning Water States in Hydrogels for High Voltage Aqueous Batteries. ACS NANO 2024; 18:3101-3114. [PMID: 38236764 DOI: 10.1021/acsnano.3c08398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Hydrogels are widely used as quasi-solid-state electrolytes in aqueous batteries. However, they are not applicable in high-voltage batteries because the hydrogen evolution reaction cannot be effectively suppressed even when water is incorporated into the polymer network. Herein, by profoundly investigating the states of water molecules in hydrogels, we designed supramolecular hydrogel electrolytes featuring much more nonfreezable bound water and much less free water than that found in conventional hydrogels. Specifically, two strategies are developed to achieve this goal. One strategy is adopting monomers with a variety of hydrophilic groups to enhance the hydrophilicity of polymer chains. The other strategy is incorporating zwitterionic polymers or polymers with counterions as superhydrophilic units. In particular, the nonfreezable bound water content increased from 0.129 in the conventional hydrogel to >0.4 mg mg-1 in the fabricated hydrogels, while the free water content decreased from 1.232 to ∼0.15 mg mg-1. As a result, a wide electrochemical stability window of up to 3.25 V was obtained with the fabricated hydrogels with low concentrations of incorporated salts and enhanced hydrophilic groups or superhydrophilic groups. The ionic conductivities achieved with our developed hydrogel electrolytes were much higher than those in the conventional highly concentrated salt electrolytes, and their cost is also much lower. The designed supramolecular hydrogel electrolytes endowed an aqueous K-ion battery (AKIB) system with a high voltage plateau of 1.9 V and contributed to steady cycling of the AKIB for over 3000 cycles. The developed supramolecular hydrogel electrolytes are also applicable to other batteries, such as aqueous lithium-ion batteries, hybrid sodium-ion batteries, and multivalent-ion aqueous batteries, and can achieve high voltage output.
Collapse
Affiliation(s)
- Chuan Li
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Donghong Wang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin 999077, NT, HKSAR, China
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, Anhui, China
| | - Shuo Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Hongfei Li
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Chunyi Zhi
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin 999077, NT, HKSAR, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong
| |
Collapse
|
10
|
Gu L, Xiao X, Yup Lee S, Lai B, Solem C. Superior anodic electro-fermentation by enhancing capacity for extracellular electron transfer. BIORESOURCE TECHNOLOGY 2023; 389:129813. [PMID: 37776913 DOI: 10.1016/j.biortech.2023.129813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Anodic electro-fermentation (AEF), where an anode replaces the terminal electron acceptor, shows great promise. Recently a Lactococcus lactis strain blocked in NAD+ regeneration was demonstrated to use ferricyanide as an alternative electron acceptor to support fast growth, but the need for high concentrations of this non-regenerated electron acceptor limits practical applications. To address this, growth of this L. lactis strain, and an adaptively evolved (ALE) mutant with enhanced ferricyanide respiration capacity were investigated using an anode as electron acceptor in a bioelectrochemical system (BES) setup. Both strains grew well, however, the ALE mutant significantly faster. The ALE mutant almost exclusively generated 2,3-butanediol, whereas its parent strain mainly produced acetoin. The ALE mutant interacted efficiently with the anode, achieving a record high current density of 0.81 ± 0.05 mA/cm2. It is surprising that a Lactic Acid Bacterium, with fermentative metabolism, interacts so well with an anode, which demonstrates the potential of AEF.
Collapse
Affiliation(s)
- Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bin Lai
- BMBF junior research group Biophotovoltaics, Helmholtz Center for Environmental Research - UFZ, Leipzig 04318, Germany.
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
11
|
Ramos MK, Martins G, Marcolino-Junior LH, Bergamini MF, Oliveira MM, Zarbin AJG. Nanoarchitected graphene/copper oxide nanoparticles/MoS 2 ternary thin films as highly efficient electrodes for aqueous sodium-ion batteries. MATERIALS HORIZONS 2023; 10:5521-5537. [PMID: 37791417 DOI: 10.1039/d3mh00982c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Sodium-ion batteries (SIBs) operating in aqueous electrolyte are an emerging technology that promises to be safer, cheaper, more sustainable and more efficient than their lithium-based counterparts. One of the great challenges associated with this technology is the development of advanced materials with high specific capacity to be used as electrodes. Herein, we describe an ingenious strategy to prepare unprecedented tri-component nanoarchitected thin films with superior performance when applied as anodes in aqueous SIBs. Taking advantage of the broadness and versatility of the liquid-liquid interfacial route, three transparent nanocomposite films comprising graphene, molybdenum sulphide and copper oxide nanoparticles have been prepared. The samples were characterized using several techniques, and the results demonstrated that depending on the specific experimental strategy, different nanoarchitectures are achieved, resulting in different and improved properties. An astonishing capacity of 1377 mA h g-1 at 0.1 A g-1 and a degree of recovery of 100% were observed for the film in which the interactions among the components were optimized. This is among the highest capacity values reported in the literature and demonstrates the potential of these tri-component materials to be used as anodes in aqueous sodium-ion batteries.
Collapse
Affiliation(s)
- Maria K Ramos
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, 81531-980, Curitiba, PR, Brazil.
| | - Gustavo Martins
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, 81531-980, Curitiba, PR, Brazil.
| | - Luiz H Marcolino-Junior
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, 81531-980, Curitiba, PR, Brazil.
| | - Márcio F Bergamini
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, 81531-980, Curitiba, PR, Brazil.
| | - Marcela M Oliveira
- Department of Chemistry and Biology, Technological Federal University of Paraná (UTFPR), Curitiba, PR, Brazil
| | - Aldo J G Zarbin
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
12
|
Gu L, Xiao X, Zhao G, Kempen P, Zhao S, Liu J, Lee SY, Solem C. Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer. Microb Biotechnol 2023; 16:1277-1292. [PMID: 36860178 DOI: 10.1111/1751-7915.14229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/22/2023] [Indexed: 03/03/2023] Open
Abstract
Lactococcus lactis, a lactic acid bacterium with a typical fermentative metabolism, can also use oxygen as an extracellular electron acceptor. Here we demonstrate, for the first time, that L. lactis blocked in NAD+ regeneration can use the alternative electron acceptor ferricyanide to support growth. By electrochemical analysis and characterization of strains carrying mutations in the respiratory chain, we pinpoint the essential role of the NADH dehydrogenase and 2-amino-3-carboxy-1,4-naphtoquinone in extracellular electron transfer (EET) and uncover the underlying pathway systematically. Ferricyanide respiration has unexpected effects on L. lactis, e.g., we find that morphology is altered from the normal coccoid to a more rod shaped appearance, and that acid resistance is increased. Using adaptive laboratory evolution (ALE), we successfully enhance the capacity for EET. Whole-genome sequencing reveals the underlying reason for the observed enhanced EET capacity to be a late-stage blocking of menaquinone biosynthesis. The perspectives of the study are numerous, especially within food fermentation and microbiome engineering, where EET can help relieve oxidative stress, promote growth of oxygen sensitive microorganisms and play critical roles in shaping microbial communities.
Collapse
Affiliation(s)
- Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ge Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Paul Kempen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jianming Liu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Sun L, Li G, Zhang S, Liu S, Yuwono J, Mao J, Guo Z. Practical assessment of the energy density of potassium-ion batteries. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
14
|
Wang J, Zuo Y, Chen M, Chen K, Chen Z, Lu Z, Si L. Bifunctional separator with a light-weight coating for stable anode-free potassium metal batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Bornamehr B, Presser V, Husmann S. Mixed Cu-Fe Sulfides Derived from Polydopamine-Coated Prussian Blue Analogue as a Lithium-Ion Battery Electrode. ACS OMEGA 2022; 7:38674-38685. [PMID: 36340172 PMCID: PMC9631889 DOI: 10.1021/acsomega.2c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Batteries employing transition-metal sulfides enable high-charge storage capacities, but polysulfide shuttling and volume expansion cause structural disintegration and early capacity fading. The design of heterostructures combining metal sulfides and carbon with an optimized morphology can effectively address these issues. Our work introduces dopamine-coated copper Prussian blue (CuPB) analogue as a template to prepare nanostructured mixed copper-iron sulfide electrodes. The material was prepared by coprecipitation of CuPB with in situ dopamine polymerization, followed by thermal sulfidation. Dopamine controls the particle size and favors K-rich CuPB due to its polymerization mechanism. While the presence of the coating prevents particle agglomeration during thermal sulfidation, its thickness demonstrates a key effect on the electrochemical performance of the derived sulfides. After a two-step activation process during cycling, the C-coated KCuFeS2 electrodes showed capacities up to 800 mAh/g at 10 mA/g with nearly 100% capacity recovery after rate handling and a capacity of 380 mAh/g at 250 mA/g after 500 cycles.
Collapse
Affiliation(s)
- Behnoosh Bornamehr
- INM—Leibniz
Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
- Department
of Materials Science & Engineering, Saarland University, Campus D2 2, 66123Saarbrücken, Germany
| | - Volker Presser
- INM—Leibniz
Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
- Department
of Materials Science & Engineering, Saarland University, Campus D2 2, 66123Saarbrücken, Germany
- Saarene—Saarland
Center for Energy Materials and Sustainability, Campus C4 2, 66123Saarbrücken, Germany
| | - Samantha Husmann
- INM—Leibniz
Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
| |
Collapse
|
16
|
Transparent aqueous rechargeable sodium-ion battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Neiva EGC, Zarbin AJG. Nickel hexacyanoferrate/graphene thin film: a candidate for the cathode in aqueous metal-ion batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj02166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reduced graphene oxide/nickel nanoparticles nanocomposite was used as precursor to synthesize a novel graphene/nickel hexacyanoferrate thin film through a heterogeneous electrochemical reaction with ferricyanide ions in solution.
Collapse
Affiliation(s)
- Eduardo G. C. Neiva
- Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-990, Curitiba, PR, Brazil
| | - Aldo J. G. Zarbin
- Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-990, Curitiba, PR, Brazil
| |
Collapse
|
18
|
Lin J, Chenna Krishna Reddy R, Zeng C, Lin X, Zeb A, Su CY. Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Liu S, Kang L, Jun SC. Challenges and Strategies toward Cathode Materials for Rechargeable Potassium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004689. [PMID: 33448099 DOI: 10.1002/adma.202004689] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/22/2020] [Indexed: 06/12/2023]
Abstract
With increasing demand for grid-scale energy storage, potassium-ion batteries (PIBs) have emerged as promising complements or alternatives to commercial lithium-ion batteries owing to the low cost, natural abundance of potassium resources, the low standard reduction potential of potassium, and fascinating K+ transport kinetics in the electrolyte. However, the low energy density and unstable cycle life of cathode materials hamper their practical application. Therefore, cathode materials with high capacities, high redox potentials, and good structural stability are required with the advancement toward next-generation PIBs. To this end, understanding the structure-dependent intercalation electrochemistry and recognizing the existing issues relating to cathode materials are indispensable prerequisites. This review summarizes the recent advances of PIB cathode materials, including metal hexacyanometalates, layered metal oxides, polyanionic frameworks, and organic compounds, with an emphasis on the structural advantages of the K+ intercalation reaction. Moreover, major current challenges with corresponding strategies for each category of cathode materials are highlighted. Finally, future research directions and perspectives are presented to accelerate the development of PIBs and facilitate commercial applications. It is believed that this review will provide practical guidance for researchers engaged in developing next-generation advanced PIB cathode materials.
Collapse
Affiliation(s)
- Shude Liu
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Ling Kang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| |
Collapse
|
20
|
Schmidt A, Ramos MK, Ferreira CM, Braz BA, Zarbin AJ. Molybdenum-based materials/carbon nanotubes nanocomposites prepared as thin and transparent films for aqueous K-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Wang F, Li Y, Zhu W, Ge X, Cui H, Feng K, Liu S, Yang X. Zn-Ion Batteries: Boosting the Rate Capability and Low-temperature Performance by Combining Structure and Morphology Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34468-34476. [PMID: 34260197 DOI: 10.1021/acsami.1c09798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prussian blue analogues (PBAs) have been considered as one kind of the most promising cathode materials for Zn-ion batteries (ZIBs) due to their low cost, high performance, high safety, and high abundance. However, owing to the low conductivity and single electron reaction, it is a great challenge to obtain a PBA cathode material with high reversible capacity, high rate capability, and good temperature adaptability. Here, a cathode material, K1.14(VO)3.33[Fe(CN)6]2·6.8H2O (KVHCF), with a multielectron reaction and double conductive carbon framework (DCCF) is designed and synthesized by combining structure and morphology engineering. With the multielectron reaction and high electronic conductivity simultaneously, the KVHCF@DCCF cathode material delivers a high specific capacity (180 mAh·g-1 @ 400 mA·g-1) and the best rate performance (116 mAh·g-1 @ 8000 mA·g-1) of the reported PBAs. Moreover, KVHCF@DCCF presents a high specific capacity of 132 mAh·g-1 @ 400 mA·g-1 at 0 °C. Even at -10 °C, it still delivers specific capacities of 127 mAh·g-1 @ 40 mA·g-1 and 80 mAh·g-1 @ 400 mA·g-1 with a retention of 86% after 700 cycles. In situ X-ray diffraction (XRD) and ex situ X-ray photoelectron spectroscopy (XPS) are carried out to investigate the charge-discharge electrochemical reaction mechanism.
Collapse
Affiliation(s)
- Fuxiang Wang
- College of Chemistry & Engineering, Yantai University, Yantai 264005, China
| | - Yanping Li
- College of Chemistry & Engineering, Yantai University, Yantai 264005, China
| | - Wenjing Zhu
- College of Chemistry & Engineering, Yantai University, Yantai 264005, China
| | - Xiuli Ge
- College of Chemistry & Engineering, Yantai University, Yantai 264005, China
| | - Hongtao Cui
- College of Chemistry & Engineering, Yantai University, Yantai 264005, China
| | - Kai Feng
- College of Chemistry & Engineering, Yantai University, Yantai 264005, China
| | - Shanshan Liu
- College of Chemistry & Engineering, Yantai University, Yantai 264005, China
| | - Xin Yang
- College of Chemistry & Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
22
|
Zarbin AJG. Liquid-liquid interfaces: a unique and advantageous environment to prepare and process thin films of complex materials. MATERIALS HORIZONS 2021; 8:1409-1432. [PMID: 34846449 DOI: 10.1039/d0mh01676d] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin film technology is pervasive for many fields with high impact in our daily lives, which makes processing materials such as thin films a very important subject in materials science and technology. However, several paramount materials cannot be prepared as thin films through the well-known and consolidated deposition routes, which strongly limits their applicability. This is particularly noticeable for multi-component and complex nanocomposites, which present unique properties due to the synergic effect between the components, but have several limitations to be obtained as thin films, mainly if homogeneity and transparence are required. This review highlights the main advances of a novel approach to both process and synthesize different classes of materials as thin films, based on liquid/liquid interfaces. The so-called liquid/liquid interfacial route (LLIR) allows the deposition of thin films of single- or multi-component materials, easily transferable over any kind of substrate (plastics and flexible substrates included) with precise control of the thickness, homogeneity and transparence. More interesting, it allows the in situ synthesis of multi-component materials directly as thin films stabilized at the liquid/liquid interface, in which problems related to both the synthesis and processing are solved together in a single step. This review presents the basis of the LLIR and several examples of thin films obtained from different classes of materials, such as carbon nanostructures, metal and oxide nanoparticles, two-dimensional materials, organic and organometallic frameworks, and polymer-based nanocomposites, among others. Moreover, specific applications of those films in different technological fields are shown, taking advantage of the specific properties emerging from the unique preparation route.
Collapse
Affiliation(s)
- Aldo J G Zarbin
- Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|