1
|
Kour S, Kour P, Sharma AL. A chromium cobaltite based ternary composite as an efficient electrode material for hybrid supercapacitors with theoretical investigation. NANOSCALE 2024; 16:21456-21470. [PMID: 39470376 DOI: 10.1039/d4nr02982h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
To cater to the growing demand for advanced energy storage devices, the development of efficient electrode materials with brilliant electrochemical response is highly required. Battery-like materials have gained wide research attention as effective electrode materials for hybrid supercapacitors (HSCs). In this account, chromium cobaltite (CrCo2O4) has been synthesized via a facile hydrothermal route. The structural and electronic properties of CrCo2O4 have been investigated using DFT. Activated carbon (AC) and polypyrrole (PPY) have been introduced to hybridize with CrCo2O4 to enhance its electrochemical performance. The high conductivity of PPY, along with the high surface area and excellent cycling stability of AC, synergistically boosts the performance of CrCo2O4. The ternary composite CrCo2O4/AC/PPY exhibited a higher capacitance of 991.25 F g-1 than the pristine CrCo2O4 (301.53 F g-1) at 5 mV s-1. The composite also displayed high cycling stability with 84.25% capacitive retention after ten thousand cycles. The composite also delivered a lower charge transfer resistance (0.36 Ω), which resulted in better charge transfer. A HSC with CrCo2O4/AC/PPY as the positive electrode and MnO2/AC as the negative electrode was fabricated that delivered a high energy density of 97.77 W h kg-1 and power of 1.6 kW kg-1. A high capacitive retention of 76.75% was observed for ten thousand cycles. The practicality of the prepared material was tested by connecting three hybrid cells in series to illuminate a panel of 57 LEDs. The panel was able to glow for 51 minutes. The outstanding performance of the composite reveals the excellent possibility for application in high-performance advanced hybrid SCs.
Collapse
Affiliation(s)
- Simran Kour
- Department of Physics, Central University of Punjab, Bathinda, Punjab, India-151401.
| | - Pawanpreet Kour
- Department of Physics, Central University of Punjab, Bathinda, Punjab, India-151401.
| | - A L Sharma
- Department of Physics, Central University of Punjab, Bathinda, Punjab, India-151401.
| |
Collapse
|
2
|
Reddy NR, Kumar AS, Reddy PM, Roy N, Kanchi S, Kakarla RR, Jung JH, Aminabhavi TM, Joo SW. One-pot hydrothermal synthesis of 3D garland BiOI, spherical ZnO, and CNFs onto Ni foam: Supercapacitor performance with enhanced electrochemical properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122841. [PMID: 39405870 DOI: 10.1016/j.jenvman.2024.122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
This study reported one-pot hydrothermal synthesis of 3D garland BiOI, spherical ZnO, and carbon nanofibers (CNFs) onto Ni foam substrate with improved supercapacitor performance and enhanced electrochemical properties. The synthesized nanocomposites exhibited high specific capacitance (SC) of 1073 g-1 at a current density of 1 A/g and excellent cycling stability with 88.6% retention of original capacity after 5000 cycles in 2M KOH aqueous solution. The findings highlight the potential of 3D materials for use as electrode materials in advanced supercapacitor applications due to their high energy storage capabilities.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - A Sai Kumar
- Department of Physics, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P Mohan Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Nipa Roy
- Department of Physics, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Suvardhan Kanchi
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560 029, India
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, Karnataka, India; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248 007, India.
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
3
|
Kour S, Kour P, Sharma AL. Polypyrrole and activated carbon enriched MnCo 2O 4 ternary composite as efficient electrode material for hybrid supercapacitors. NANOSCALE 2024; 16:13627-13641. [PMID: 38961760 DOI: 10.1039/d4nr00828f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The development of proficient electrode materials is one of the major tasks faced by modern techniques for energy storage. Integrating different materials with synergistic effects can be a valuable strategy for designing storage devices with high capacity and energy density. The spinel manganese cobaltite (MnCo2O4) is an outstanding candidate for supercapacitors owing to its remarkable pseudocapacitive behavior. However, it suffers from low electric conductivity and limited cyclic stability. To overcome its limitations, activated carbon with superior cyclic stability and polypyrrole with high electric conductivity can be incorporated in MnCo2O4. The synergistic effect of these components offers high capacitance, better conductivity, and superior cyclic performance to the ternary composite. Herein, the MnCo2O4/AC/PPY ternary composite has been synthesized by a facile approach. The optimized ternary composite (MAP-20) exhibited a wonderful capacitance of 945.77 F g-1 at five mV s-1 compared to pristine MnCo2O4 (254.98 F g-1). The real-time applicability of the optimized composite was tested with asymmetric device configuration. The asymmetric device with MAP-20 and MnO2/AC electrodes exhibited a wonderful Ed of 88.12 W h kg-1 (Pd ∼ 1.6 kW kg-1). The asymmetric device also exhibited excellent cyclic performance of 89.68% for 10 000 cycles. Further, the real-time applicability of the device was tested by illuminating a 39 red LED panel. Three asymmetric cells connected in series illuminated the panel for about 45 minutes. All these results suggest that the synergistic integration of various efficient electrode materials leads to enhanced electrochemical performance of supercapacitors.
Collapse
Affiliation(s)
- Simran Kour
- Department of Physics, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - Pawanpreet Kour
- Department of Physics, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - A L Sharma
- Department of Physics, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
4
|
Hou Z, Yu J, Zhou X, Chen Z, Xu J, Zhao B, Gen W, Zhang H. Enhanced performance of hybrid supercapacitors by the synergistic effect of Co(OH) 2 nanosheets and NiMn layered hydroxides. J Colloid Interface Sci 2023; 646:753-762. [PMID: 37229993 DOI: 10.1016/j.jcis.2023.05.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
A self-supporting composite electrode material with a unique three-dimensional structure was synthesized by in-situ growth of nanoscale NiMnLDH-Co(OH)2 on a nickel foam substrate via hydrothermal electrodeposition. The 3D layer of NiMnLDH-Co(OH)2 provided abundant reactive sites for electrochemical reactions, ensuring a solid and conductive skeleton for charge transfer and resulting in significant enhancement of electrochemical performance. The composite material showed a strong synergistic effect between the small nano-sheet Co(OH)2 and NiMnLDH, which promoted reaction kinetics, while the nickel foam substrate acted as a structural conductivity agent, stabilizer, and good conductive medium. The composite electrode showed impressive electrochemical performance, achieving a specific capacitance of 1870F g-1 at 1 A g-1 and retaining 87% capacitance after 3000 charge-discharge cycles, even at a high current density of 10 A g-1. Moreover, the resulting NiMnLDH-Co(OH)2//AC asymmetric supercapacitor (ASC) demonstrated remarkable specific energy of 58.2 Wh kg-1 at a specific power of 1200 W kg-1, along with outstanding cycle stability (89% capacitance retention after 5000 cycles at 10 A g-1). More importantly, DFT calculations reveal that NiMnLDH-Co(OH)2 facilitates charge transfer, accelerating surface redox reactions and increasing specific capacitance. This study presents a promising approach towards designing and developing advanced electrode materials for high-performance supercapacitors.
Collapse
Affiliation(s)
- Zhuoran Hou
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Jie Yu
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Xinsheng Zhou
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Zhibin Chen
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Jiawei Xu
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Boyu Zhao
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wenbao Gen
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Huayu Zhang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| |
Collapse
|
5
|
Ni X, Li K, Li C, Wu Q, Liu C, Chen H, Wu Q, Ju A. Construction of NiCo2O4 nanoflake arrays on cellulose-derived carbon nanofibers as a freestanding electrode for high-performance supercapacitors. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
BoopathiRaja R, S.Vadivel, Rathinavel S, Parthibavarmana M, Ezhilarasana M. Shape-controlled synthesis of polypyrrole incorporated urchin-flower like Ni2P2O7 cathode material for asymmetric supercapacitor applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Reconstruction of Co/Ni metal-organic-framework based electrode materials with excellent conductivity and integral stability via extended hydrothermal treatment toward improved performance of supercapacitors. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
The charge transfer pathway of g-C3N4 decorated Au/Ni3(VO4)2 composites for highly efficient photocatalytic hydrogen evolution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Revathi M, Pricilla Jeyakumari A, Sridarane R, Shkir M, El Sayed Massoud E, Sreedevi Gedi V. Enhance Photovoltaic Performance of WO3/CdS Heterostructure Photoanodes for High Performance of Dye Sensitized Solar Cells (DSSCs). J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Facile Synthesis of NiCo 2O 4 Nanowire Arrays/Few-Layered Ti 3C 2-MXene Composite as Binder-Free Electrode for High-Performance Supercapacitors. Molecules 2022; 27:molecules27196452. [PMID: 36234989 PMCID: PMC9572776 DOI: 10.3390/molecules27196452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, a 3D hierarchical structure is constructed by growing NiCo2O4 nanowires on few-layer Ti3C2 nanosheets using Ni foam (NF) as substrate via simple vacuum filtration and solvothermal treatment. Ti3C2 nanosheets are directly anchored on NF surface without binders or surfactants, and NiCo2O4 nanowires composed of about 15 nm nanoparticles uniformly grow on Ti3C2/NF skeleton, which can provide abundant active sites and ion diffusion pathways for enhancing electrochemical performance. Benefiting from the unique structure feature and the synergistic effects of active materials, NiCo2O4/Ti3C2 exhibits a high specific capacitance of 2468 F g-1 at a current density of 0.5 A g-1 and a good rate performance. Based on this, an asymmetric supercapacitor (ASC) based on NiCo2O4/Ti3C2 as positive electrode and activated carbon (AC)/NF as negative electrode is assembled. The ASC achieves a high specific capacitance of 253 F g-1 at 1 A g-1 along with 91.5% retention over 10,000 cycles at 15 A g-1. Furthermore, the ACS presents an outstanding energy density of 90 Wh kg-1 at the power density of 2880 W kg-1. This work provides promising guidance for the fabrication of binder-free, free-standing and hierarchical composites for energy storage application.
Collapse
|
11
|
Wang Y, Zheng X, Cao X, Yang C, Zhao Q, Zhang Y, Xia X. Facile Synthesis of CoSe/Co 3O 4-CNTs/NF Composite Electrode for High-Performance Asymmetric Supercapacitor. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5841. [PMID: 36079226 PMCID: PMC9457315 DOI: 10.3390/ma15175841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Electrode materials are key factors for supercapacitors to endow them with excellent electrochemical properties. Here, a novel hybrid structure of a CoSe/Co3O4-CNTs binder free composite electrode on nickel foam was prepared via a facile flame method, followed by an electrodeposition process. Benefitting from the synergetic effects of the multicomponent (with low resistances of 1.542 Ω cm2 and a moderate mesoporous size of 3.12 nm) and the enlarged specific surface area of the composite material (77.4 m2 g-1), the CoSe/Co3O4-CNTs composite electrode delivers a high specific capacitance of 2906 F g-1 at 5 mV s-1 with an excellent rate stability. The fabricated CoSe/Co3O4-CNTs/NF//AC ASC exhibits a high energy density of 43.4 Wh kg-1 at 0.8 kW kg-1 and a long cycle life (92.7% capacitance retention after 10,000 cycles).
Collapse
Affiliation(s)
- Ying Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xiang Zheng
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianjun Cao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chengtao Yang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Qiang Zhao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yongqi Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinhui Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
12
|
Yang J, Li H, He S, Du H, Liu K, Zhang C, Jiang S. Facile Electrodeposition of NiCo2O4 Nanosheets on Porous Carbonized Wood for Wood-Derived Asymmetric Supercapacitors. Polymers (Basel) 2022; 14:polym14132521. [PMID: 35808566 PMCID: PMC9269009 DOI: 10.3390/polym14132521] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 01/29/2023] Open
Abstract
Multichannel-porous carbon derived from wood can serve as a conductive substrate for fast charge transfer and ion diffusion, supporting the high-theory capacitance of pseudocapacitive materials. Herein, NiCo2O4 nanosheets, which are hierarchically porous, anchored on the surface of carbonized wood via electrodeposition for free-binder high-performance supercapacitor electrode materials, were proposed. Benefiting from the effectively alleviated NiCo2O4 nanosheets accumulation and sufficient active surface area for redox reaction, a N-doped wood-derived porous carbon-NiCo2O4 nanosheet hybrid material (NCNS–NCW) electrode exhibited a specific electric capacity of 1730 F g−1 at 1 A g−1 in 1 mol L−1 KOH and splendid electrochemical firmness with 80% capacitance retention after cycles. Furthermore, an all-wood-based asymmetric supercapacitor based on NCNS–NCW//NCW was assembled and a high energy density of 56.1 Wh kg−1 at a watt density of 349 W kg−1 was achieved. Due to the great electrochemical performance of NCNS–NCW, we expect it to be used as an electrode material with great promise for energy storage equipment.
Collapse
Affiliation(s)
- Jingjiang Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (H.L.)
| | - Huiling Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (H.L.)
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (H.L.)
- Correspondence: (S.H.); (C.Z.); (S.J.)
| | - Haijuan Du
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China;
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (S.H.); (C.Z.); (S.J.)
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.Y.); (H.L.)
- Correspondence: (S.H.); (C.Z.); (S.J.)
| |
Collapse
|
13
|
ZIF-8 derived CuFe2O4 nanoparticles: Evolution of composition and microstructures, and their electrochemical performances as anode for lithium-ion batteries. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Redox Participation and Plasmonic Effects of Ag Nanoparticles in Nickel Cobaltite-Ag Architectures as Battery Type Electrodes for Hybrid Supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Construction of Ni doped MoO3 nanostructures and their application as counter electrode in dye-sensitized solar cells. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Mahadik SM, Chodankar NR, Han YK, Dubal DP, Patil S. Nickel Cobaltite: A Positive Electrode Material for Hybrid Supercapacitors. CHEMSUSCHEM 2021; 14:5384-5398. [PMID: 34643058 DOI: 10.1002/cssc.202101465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The increased demand of energy due to the recent technological advances in diverse fields such as portable electronics and electric vehicles is often hindered by the poor capability of energy-storage systems. Although supercapacitors (SCs) exhibit higher power density than state-of-the art batteries, their insufficient energy density remains a major challenge. An emerging concept of hybrid supercapacitors (HSCs) with the combination of one capacitive and one battery electrode in a single cell holds a great promise to deliver high energy density without sacrificing power density and cycling stability. This Minireview elaborates the recent advances of use of nickel cobaltite (NiCo2 O4 ) as a potential positive electrode (battery-like) for HSCs. A brief introduction on the structural benefits and charge storage mechanisms of NiCo2 O4 was provided. It further shed a light on composites of NiCo2 O4 with different materials like carbon, polymers, metal oxides, and others, which altogether helps in increasing the electrochemical performance of HSCs. Finally, the key scientific challenges and perspectives on building high-performance HSCs for future-generation applications were reviewed.
Collapse
Affiliation(s)
- Shivraj M Mahadik
- Department of Physics, Sanjay Ghodawat University, Kolhapur, 416118, India
| | - Nilesh R Chodankar
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Young-Kyu Han
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Deepak P Dubal
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, Australia
| | - Sarita Patil
- Department of Physics, Sanjay Ghodawat University, Kolhapur, 416118, India
| |
Collapse
|
17
|
Revathi M, Pricilla jeyakumari A, Saravanan S. Design and Fabrication of ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Functionalization of 0-D and 2-D carbon nitride nanostructures on bio-derived carbon spheres for sustainable electrochemical supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Uke SJ, Mardikar SP, Kumar A, Kumar Y, Gupta M, Kumar Y. A review of π-conjugated polymer-based nanocomposites for metal-ion batteries and supercapacitors. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210567. [PMID: 34703617 PMCID: PMC8527214 DOI: 10.1098/rsos.210567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Owing to their extraordinary properties of π-conjugated polymers (π-CPs), such as light weight, structural versatility, ease of synthesis and environmentally friendly nature, they have attracted considerable attention as electrode material for metal-ion batteries (MIBs) and supercapacitors (SCPs). Recently, researchers have focused on developing nanostructured π-CPs and their composites with metal oxides and carbon-based materials to enhance the energy density and capacitive performance of MIBs and SCPs. Also, the researchers recently demonstrated various novel strategies to combine high electrical conductivity and high redox activity of different π-CPs. To reflect this fact, the present review investigates the current advancements in the synthesis of nanostructured π-CPs and their composites. Further, this review explores the recent development in different methods for the fabrication and design of π-CPs electrodes for MIBs and SCPs. In review, finally, the future prospects and challenges of π-CPs as an electrode materials for strategies for MIBs and SCPs are also presented.
Collapse
Affiliation(s)
- Santosh J. Uke
- Department of Physics, JDPS College, SGB Amravati University, Amravati India
| | - Satish P. Mardikar
- Department of Chemistry, SRS College, SGB Amravati University, Amravati India
| | - Ashwani Kumar
- Institute Instrumentation Centre, IIT Roorkee-247667, India
| | - Yogesh Kumar
- Department of Physics G.D, Goenka University, Gurgaon 122002, India
| | - Meenal Gupta
- Department of Physics, MRL, SBSR, Sharda University, Greater Noida 201 310, India
| | - Yogesh Kumar
- Department of Physics, ARSD College, University of Delhi 110021, India
| |
Collapse
|
20
|
Facile Synthesis of Coral Reef-Like ZnO/CoS2 Nanostructure on Nickel Foam as an Advanced Electrode Material for High-Performance Supercapacitors. ENERGIES 2021. [DOI: 10.3390/en14164925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanocomposite electrodes receive much attention because of their excellent energy storage nature. Electrodes for supercapacitors have come a major source of interest. In this pursuit, the current work elucidates binder-free coral reefs resembling ZnO/CoS2 nanoarchitectures synthesized on the surface of Ni foams employing the cost-effective hydrothermal route. The Zno/CoS2 nanocomposite demonstrated excellent battery-type behavior, which can be employed for supercapcitor application. Various analyses were carried out in the current study, such as X-ray diffraction and high-resolution scanning electron microscopy, which allowed defining the crystalline nature and morphology of surface with ZnO/CoS2 nanoarchitectures. Electrochemical measures such as cyclic voltammetry, galvanostatic charge discharge, and potentiostatic impedance spectroscopy confirmed the battery-type behavior of the material. The synthesized precursors of binder-free ZnO/CoS2 nanostructures depicted an excellent specific capacity of 400.25 C·g−1 at 1 A·g−1, with a predominant cycling capacity of 88. 2% and retention holding of 68% at 10 A·g−1 and 2 A·g−1, even after 4000 cycles, representing an improvement compared to the pristine ZnO and CoS2 electroactive materials. Therefore, the electrochemical and morphological analyses suggest the excellent behavior of the ZnO/CoS2 nanoarchitectures, making them promising for supercapacitors.
Collapse
|
21
|
Li Y, Zhang J, Chen Q, Xia X, Chen M. Emerging of Heterostructure Materials in Energy Storage: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100855. [PMID: 34033149 DOI: 10.1002/adma.202100855] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/28/2021] [Indexed: 06/12/2023]
Abstract
With the ever-increasing adaption of large-scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano-scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built-in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), lithium-sulfur batteries (Li-S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Jiawei Zhang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qingguo Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Xinhui Xia
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| |
Collapse
|
22
|
Shen M, Chen L, Ren S, Chen Y, Li W, Zheng R, Lin Y, Han D. Construction of CuO/PPy heterojunction nanowire arrays on copper foam as integrated binder-free electrode material for high-performance supercapacitor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Pt-free and efficient counter electrode with nanostructured CoNi2S4/rGO for dye-sensitized solar cells. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Ramesh Reddy N, Mamatha Kumari M, Shankar MV, Raghava Reddy K, Woo Joo S, Aminabhavi TM. Photocatalytic hydrogen production from dye contaminated water and electrochemical supercapacitors using carbon nanohorns and TiO 2 nanoflower heterogeneous catalysts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111433. [PMID: 33070019 DOI: 10.1016/j.jenvman.2020.111433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
In this research, efficient and novel catalysts based on hierarchical carbon nanohorns-titanium nanoflowers have been prepared by one-pot solvothermal process. Hydrogen generation from dye-contaminated water and dye degradation along with electrochemical supercapacitance performance have been investigated using the synthesized hierarchical catalyst to produce 4500 μmol g-1 h-1 of hydrogen from the photocatalytically generated aqueous methylene blue and methyl orange dyes, which were degraded up to 90% under natural solar light irradiation. These results offer a new path to generate hydrogen from the aqueous dyes. The catalysts electrode showed 164.6 F g-1 supercapacitance at 5 mV s-1 scan rate, which is nearly 1.3 and 1.65-times higher than that of pristine titanium nanoflower and carbon nanohorns electrodes, respectively. Such superior results were achieved due to good crystallinity, improved optical absorption strength, strong chemical composition between the two components, and hierarchical morphology as demonstrated from XRD, UV-DRS, TEM, XPS, and Raman spectral characterizations.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - M Mamatha Kumari
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - M V Shankar
- Nanocatalysis and Solar Fuels Research Lab, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516 005, Andhra Pradesh, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | | |
Collapse
|
25
|
Sreekanth T, Yoo K, Kim J. Thorn-shaped NiCo2O4 nanoparticles as multi-functional electrocatalysts for electrochemical applications. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|