1
|
Shao Y, Xu J, Amardeep A, Xia Y, Meng X, Liu J, Liao S. Lithium-Ion Conductive Coatings for Nickel-Rich Cathodes for Lithium-Ion Batteries. SMALL METHODS 2024; 8:e2400256. [PMID: 38708816 PMCID: PMC11671860 DOI: 10.1002/smtd.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Indexed: 05/07/2024]
Abstract
Nickel (Ni)-rich cathodes are among the most promising cathode materials of lithium batteries, ascribed to their high-power density, cost-effectiveness, and eco-friendliness, having extensive applications from portable electronics to electric vehicles and national grids. They can boost the wide implementation of renewable energies and thereby contribute to carbon neutrality and achieving sustainable prosperity in the modern society. Nevertheless, these cathodes suffer from significant technical challenges, leading to poor cycling performance and safety risks. The underlying mechanisms are residual lithium compounds, uncontrolled lithium/nickel cation mixing, severe interface reactions, irreversible phase transition, anisotropic internal stress, and microcracking. Notably, they have become more serious with increasing Ni content and have been impeding the widespread commercial applications of Ni-rich cathodes. Various strategies have been developed to tackle these issues, such as elemental doping, adding electrolyte additives, and surface coating. Surface coating has been a facile and effective route and has been investigated widely among them. Of numerous surface coating materials, have recently emerged as highly attractive options due to their high lithium-ion conductivity. In this review, a thorough and comprehensive review of lithium-ion conductive coatings (LCCs) are made, aimed at probing their underlying mechanisms for improved cell performance and stimulating new research efforts.
Collapse
Affiliation(s)
- Yijia Shao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & the Key Laboratory of New Energy Technology of Guangdong UniversitiesSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641China
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Jia Xu
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Amardeep Amardeep
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Yakang Xia
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Xiangbo Meng
- Department of Mechanical EngineeringUniversity of ArkansasFayettevilleAR72701USA
| | - Jian Liu
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & the Key Laboratory of New Energy Technology of Guangdong UniversitiesSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641China
| |
Collapse
|
2
|
Zhou J, Chu Y, Liu W, Chu F, Guan Z, He Z, Li J, Wu F. Mg/Al Double-Pillared LiNiO 2 as a Co-Free Ternary Cathode Material Ensuring Stable Cycling at 4.6 V. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13948-13960. [PMID: 38441538 DOI: 10.1021/acsami.3c17457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cobalt-free (Co-free) and nickel-rich (Ni-rich) cathode materials have attracted significant attention and undergone extensive studies due to their affordability and superior energy density. However, the commercialization of these Co-free materials is hindered by challenges such as cation disorder, irreversible phase changes, and inadequate high-voltage performance. To overcome these challenges, a Co-free ternary cathode material of Mg/Al double-pillared LiNiO2 (NMA) synthesized via a wet-coating and lithiation-sintering technique is proposed. Fundamental studies reveal that Mg and Al have the potential to form a distinctive double-pillar structure within the layered cathode, enhancing its structural stability. To be specific, the strategic placement of Mg and Al in Li and Ni layers, respectively, effectively reduces Li+/Ni2+ disorder and prevents irreversible phase transitions. Additionally, the inclusion of Mg and Al refines the primary grains and compacts the secondary grains in the cathode material, reducing stress from cyclic usage and preventing material cracking, thereby mitigating electrolyte erosion. As a result, NMA demonstrates exceptional electrochemical performance under a high charge cutoff voltage of 4.6 V. It maintains 70% of initial specific capacity after 500 cycles at 1 C and exhibits excellent rate performance, with a capacity of 162 mAh g-1 at 5 C and 149 mAh g-1 at 10 C. As a whole, the produced NMA achieves a high structural stability in cases of excessive delithiation, providing a groundbreaking solution for the development of cost-effective and high-energy-density cathode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Jinwei Zhou
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yuhang Chu
- School of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Wenxin Liu
- School of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Fulu Chu
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Zengqiang Guan
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Zhenjiang He
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Jinhui Li
- School of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Feixiang Wu
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
3
|
Zhang B, Zhong J, Pan F, Lin Z. Potential Solid-State Electrolytes with Good Balance between Ionic Conductivity and Electrochemical Stability: Li 5-xM 1-xM x'O 4 (M = Al and Ga and M' = Si and Ge). ACS APPLIED MATERIALS & INTERFACES 2021; 13:61296-61304. [PMID: 34905331 DOI: 10.1021/acsami.1c19922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring new solid-state electrolyte (SSE) materials with good electrochemical stability and high Li-ion conductivity for all-solid-state Li-ion batteries is vital for the development of technologies. Herein, we employ two lithium aluminates, α- and β-Li5AlO4 (α- and β-LAO), as the model framework, which have an orthorhombic crystal structure and isolated AlO4 tetrahedron units connected in lithium atoms, exhibiting large band gaps, low migration barriers (0.30-0.40 eV), fast Li-ion conductivity (LIC, in a magnitude of 10-4 S/cm), and a good electrochemical stability window (ESW, [0.01-3.20 V] vs Li+/Li). We tabulate the expected decomposition products at the interface, while considering cathodes in combination with the LAO electrolyte to discuss their compatibility. We also examine the electrochemical stability, H2O/CO2 stability, and Li-ion mobility of Li4.6Al0.6Si0.4O4 (LASO), Li5GaO4 (LGaO), and Li4.6Ga0.6Ge0.4O4 (LGaGeO) compounds. In general, there is usually a trade-off between the LIC and the ESW; however, LAO features a good balance between an outstanding LIC and a wide ESW, making the compound a promising candidate for next-generation SSE materials.
Collapse
Affiliation(s)
- Bingkai Zhang
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiajie Zhong
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Feng Z, Zhang S, Rajagopalan R, Huang X, Ren Y, Sun D, Wang H, Tang Y. Dual-Element-Modified Single-Crystal LiNi 0.6Co 0.2Mn 0.2O 2 as a Highly Stable Cathode for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43039-43050. [PMID: 34473468 DOI: 10.1021/acsami.1c10799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-crystalline LiNi0.6Co0.2Mn0.2O2 cathodes have received great attention due to their high discharge capacity and better electrochemical performance. However, the single-crystal materials are suffering from severe lattice distortion and electrode/electrolyte interface side reactions when cycling at high voltage. Herein, a unique single-crystal LiNi0.6Co0.2Mn0.2O2 with Al and Zr doping in the bulk and a self-formed coating layer of Li2ZrO3 in the surface has been constructed by a facile strategy. The optimized cathode material exhibits excellent structural stability and cycling performance at room/elevated temperatures after long-term cycling. Specifically, even after 100 cycles (1C, 3.0-4.4 V) at 50 °C, the capacity retention for the Al and Zr co-doped sample reaches 92.1%, which is much higher than those of the single Al-doped (85.4%), single Zr-doped (87.1%), and bare samples (76.3%). The characterization results and first-principles calculations reveal that the excellent electrochemical properties are attributed to the stable structure and interface, in which the Al and Zr co-doping hinders cation mixing and suppresses detrimental phase transformations to reduce internal stress and mitigate microcracks, and the coating layer of Li2ZrO3 can protect the surface and suppress interfacial parasitic reactions. Overall, this work provides important insights into how to simultaneously build a stable bulk structure and interface for the single-crystal NCM cathode via a facile preparation process.
Collapse
Affiliation(s)
- Ze Feng
- Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shan Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ranjusha Rajagopalan
- Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiaobing Huang
- Hunan Provincial Key Laboratory for Control Technology of Distributed Electric Propulsion Aircraft, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
| | - Yurong Ren
- School of Materials Science and Engineering, Jiangsu Province Intelligent Manufacturing Technology Engineering Research Center for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, P. R. China
| | - Dan Sun
- Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
5
|
Enhancing the stabilities and electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode material by simultaneous LiAlO2 coating and Al doping. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Li S, Li C, Yang T, Wang W, Lu J, Fan W, Zhao X, Zuo X, Tie S, Nan J. 3,3‐Diethylene Di‐Sulfite (DES) as a High‐Voltage Electrolyte Additive for 4.5 V LiNi
0.8
Co
0.1
Mn
0.1
O
2
/Graphite Batteries with Enhanced Performances. ChemElectroChem 2021. [DOI: 10.1002/celc.202100091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shuai Li
- School of Chemistry South China Normal University Guangzhou 510006 P.R. China
| | - Canhuang Li
- School of Chemistry South China Normal University Guangzhou 510006 P.R. China
| | - Tianxiang Yang
- School of Chemistry South China Normal University Guangzhou 510006 P.R. China
| | - Wenlian Wang
- School of Chemistry South China Normal University Guangzhou 510006 P.R. China
| | - Jing Lu
- School of Chemistry South China Normal University Guangzhou 510006 P.R. China
| | - Weizhen Fan
- Guangzhou Tinci Materials Technology Co., Ltd. Guangzhou 510760 P.R. China
| | - Xiaoyang Zhao
- Department of Environmental Engineering Henan Polytechnic Institute Nanyang 473009 P.R. China
| | - Xiaoxi Zuo
- School of Chemistry South China Normal University Guangzhou 510006 P.R. China
| | - Shaolong Tie
- School of Chemistry South China Normal University Guangzhou 510006 P.R. China
| | - Junmin Nan
- School of Chemistry South China Normal University Guangzhou 510006 P.R. China
| |
Collapse
|