1
|
Liu X, Shao Y, Xu J, Zhang Y, Zhao Q, Chen H, Yang Y, Ma J. Grain boundary/doping/architecture engineering in hierarchical N-doped CuO microflowers derived from Cu-based metal-organic framework architectures for highly efficient nonenzymatic glucose detection. Talanta 2025; 289:127775. [PMID: 39985927 DOI: 10.1016/j.talanta.2025.127775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Glucose detection is essential in clinical medicine, and the reasonable design of metal oxide electrocatalysts plays a crucial role in developing efficient nonenzymatic glucose (NEG) sensors. Herein, grain boundary/doping/architecture engineering is used to tailor the structures of CuO nanomaterials and tune their surface/electron-transfer properties toward enhanced electrocatalytic oxidation of glucose. Hierarchical N-doped CuO microflowers (N-CuO-MF) are synthesized using a facile hydrothermal method, followed by calcination. N-CuO-MF consist of ultrathin nanoflakes (ca. 20 nm), endowing them with a large specific surface area. Moreover, the nanoflakes are composed of ultrasmall nanoparticles, resulting in abundant grain boundaries. Notably, N-CuO-MF are derived from a precursor of Cu-based metal-organic framework (Cu-MOF) architectures, which is fabricated through a bottom-up route using glycerol as the capping agent/solvent and 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br) as the template/N source. Glycerol competitively coordinates with Cu2+, leading to the formation of 2D subunits. Moreover, [C16mim]+ cations attach to the subunit surfaces via electrostatic interaction, thus achieving Cu-MOF with a 3D hierarchical structure. As expected, the synergistic effect of rich grain boundaries, N doping, ultrathin nanoflakes, and hierarchical architecture enhances the adsorption of glucose on the electrode surfaces, accelerates electron transfer, and exposes more active sites for glucose oxidation. Accordingly, N-CuO-MF exhibit wide linear ranges, high sensitivity, fast response time, low detection limit, excellent selectivity, and good stability. Owing to their highly efficient electrocatalytic properties, N-CuO-MF could be explored as potential electrocatalysts in NEG sensors for rapid diagnostic tests and health monitoring.
Collapse
Affiliation(s)
- Xiaodi Liu
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China.
| | - Yonghui Shao
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Jiachuang Xu
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Yu Zhang
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Qiang Zhao
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Hao Chen
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Yan Yang
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China.
| | - Jianmin Ma
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Nandhini C, Huang CH, Mani G, Arul P, Huang ST. Development of ternary hybrid composites of transition metal and noble metal-based heterostructures: Ultrasensitive simultaneous electrochemical detection of bisphenol A and bisphenol S in food samples. Food Chem 2024; 459:140451. [PMID: 39029424 DOI: 10.1016/j.foodchem.2024.140451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Bisphenols threaten human health and sensitive detection is crucial. The present study aims to develop ternary composites of copper metal-organic framework (Cu-MOF) with AuAg microstructures. The composite structure was formed by a galvanic displacement reaction and confirmed using SEM. A binder-free catalyst was used to study the electrochemical redox reaction of bisphenol A (BPA) and bisphenol S (BPS); an irreversible cyclic voltammetric signal at +0.70 V and + 0.91 V (vs. Ag/AgCl), in the dynamic range of 20 nM to 2.0 mM, and 10 nM to 1.0 mM, with limits of detection of 2.9 nM, and 3.2 nM (S/N = 3) was obtained. Practical analysis was applied to frozen tomatoes, tuna fish, milk powder, PET bottles, raw milk, and urine samples with a recovery rate of 94.00-100.80% (n = 3). Voltammetric results were validated using HPLC detection with high precision. The sensor is a promising alternative platform for measuring BPA in food samples.
Collapse
Affiliation(s)
- Chinnathambi Nandhini
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24303, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24303, Taiwan; Center for Plasma and Thin Film Technologies, Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 243303, Taiwan; College of Engineering, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Govindasamy Mani
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 243301, Taiwan
| | - Ponnusamy Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
3
|
Farwa U, Sandhu ZA, Kiran A, Raza MA, Ashraf S, Gulzarab H, Fiaz M, Malik A, Al-Sehemi AG. Revolutionizing environmental cleanup: the evolution of MOFs as catalysts for pollution remediation. RSC Adv 2024; 14:37164-37195. [PMID: 39569125 PMCID: PMC11578092 DOI: 10.1039/d4ra05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
The global problem of ecological safety and public health necessitates, the development of new sustainable ideas for pollution remediation. In recent development, metal-organic frameworks (MOF) are the emerging technology with remarkable potential, which have been employed in environmental remediation. MOFs are networks that are created by the coordination of metals or polyanions with ligands and contain organic components that can be customized. The interesting features of MOFs are a large surface area, tuneable porosity, functional diversity, and high predictability of pollutant adsorption, catalysis, and degradation. It is a solid material that occupies a unique position in the war against environmental pollutants. One of the main benefits of MOFs is that they exhibit selective adsorption of a wide range of pollutants, including heavy metals, organics, greenhouse gases, water and soil. Only particles with the right combination of pore size and chemical composition will achieve this selectivity, derived from the high level of specificity. Besides, they possess high catalytic ability for the removal of pollutants by means of different methods such as photocatalysis, Fenton-like reactions, and oxidative degradation. By generating mobile active sites within the framework of MOFs, we can not only ensure high affinity for pollutants but also effective transformation of toxic chemicals into less harmful or even inert end products. However, the long-term stability of MOFs is becoming more important as eco-friendly parts are replaced with those that can be used repeatedly, and systems based on MOFs that can remove pollutants in more than one way are fabricated. MOFs can reduce waste production, energy consumption as compared to the other removal process. With its endless capacities, MOF technology brings a solution to the environmental cleansing problem, working as a flexible problem solver from one field to another. The investigation of MOF synthesis and principles will allow researchers to fully understand the potential of MOFs in environmental problem solving, making the world a better place for all of us.
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Azwa Kiran
- Department of Chemistry, Faculty of Science, University of Engineering and Technology Lahore Lahore Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Hamza Gulzarab
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Fiaz
- Department of Chemistry, University of Texas at Austin USA
| | - Adnan Malik
- Department of Physics and Chemistry, Faculty of Applied Science and Technology, University Tun Hussein Onn Malaysia Pagoh Campus Malaysia
| | | |
Collapse
|
4
|
Arivazhagan M, Pavadai R, Murugan N, Jakmunee J. Surface engineered metal-organic framework-based electrochemical biosensors for enzyme-mimic ultrasensitive detection of glucose: recent advancements and future perspectives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6474-6486. [PMID: 39246227 DOI: 10.1039/d4ay01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Metal-Organic Frameworks (MOFs) have garnered significant attention in the development of electrochemical glucose sensors due to their unique and advantageous properties. The highly tunable pore channels of MOFs facilitate optimal diffusion of glucose molecules, while their large specific surface area provides abundant active sites for electrochemical reactions. Furthermore, the well-dispersed metallic active sites within MOFs enhance electrocatalytic activity, thereby improving the sensitivity and selectivity of glucose detection. These features make MOF-based nanoarchitectures promising candidates for the development of efficient and sensitive glucose sensors, which are crucial for diabetes management and monitoring. The integration of enzymatic biosensors with nanotechnology continues to drive advancements in glucose monitoring, offering the potential for more accurate, convenient, and user-friendly tools for diabetes management. Current research explores non-invasive glucose monitoring methods, such as using sweat, saliva, or interstitial fluid instead of blood, aiming to reduce the discomfort and inconvenience associated with frequent blood sampling. A review of the advancements and applications of MOF-based enzyme-mimic electrochemical sensors for glucose monitoring can provide valuable insights for young researchers, inspiring future research in biomedical device fabrication. Such reviews not only offer a comprehensive understanding of the current state of the art but also highlight existing challenges and future opportunities in the field of enzyme-less glucose sensing, particularly in the surface modification techniques of highly porous MOFs. This fosters innovation and new research directions. By understanding the advantages, challenges, and opportunities, researchers can contribute to the development of more effective and innovative enzyme-mimic glucose sensing transducers, which are essential for advancing biomedical devices.
Collapse
Affiliation(s)
- Mani Arivazhagan
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Rajaji Pavadai
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nagaraj Murugan
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
- Department of Polymer Engineering and Graduate School, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jaroon Jakmunee
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
5
|
Arul P, Huang ST, Nandhini C, Huang CH, Gowthaman NSK, Huang CH. Development of a nanozyme-based electrochemical catalyst for real-time biomarker sensing of superoxide and nitric oxide anions released from living cells and exogenous donors. Biosens Bioelectron 2024; 261:116485. [PMID: 38852323 DOI: 10.1016/j.bios.2024.116485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Developing quantitative biosensors of superoxide (O2•-) and nitric oxide (NO) anion is crucial for pathological research. As of today, the main challenge for electrochemical detection is to develop high-selectivity nano-mimetic materials to replace natural enzymes. In this study, the dendritic-like morphological structure of silver organic framework (Ag-MOF) was successfully synthesized via a solvothermal strategy. Owing to the introduction of polymeric composites results in improved electrical conductivity and catalytic activity, which promotes mass transfer and leads to faster electron efficiency. For monitoring the electrochemical signals of O2•- and NO, the Ag-MOF electrode substrate was produced by drop-coating, and composites were designed by cyclic voltammetric potential cycles. The designed electrode substrates demonstrate high sensitivity, wide linear concentrations of 1 nM-1000 μM and 1 nM-850 μM, and low detection limits of 0.27 nM and 0.34 nM (S/N = 3) against O2•- and NO. Aside from that, the sensor successfully monitored the cellular release of O2•-, and NO from HepG2 and RAW 264.7 living cells and has the potential to monitor exogenous NO release from donors of Diethylamine (DEA)-NONOate and sodium nitroprusside (SNP). Additionally, the developed system was applied to the analysis of O2•- and NO in real biological fluid samples, and the results were good satisfactory (94.10-99.57 ± 1.23%). The designed system provides a novel approach to obtaining a good electrochemical biosensor platform that is highly selective, stable, and flexible. Finally, the proposed method provides a quantitative way to follow the dynamic changes in O2•- and NO in biological systems.
Collapse
Affiliation(s)
- Ponnusamy Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan.
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan; High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., 10608, Taipei, Taiwan.
| | - Chinnathambi Nandhini
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - N S K Gowthaman
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan 47500, Bandar Sunway, Selangor, Malaysia
| | - Chih-Hung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| |
Collapse
|
6
|
Rafiq K, Sabir M, Abid MZ, Hussain E. Unveiling the scope and perspectives of MOF-derived materials for cutting-edge applications. NANOSCALE 2024; 16:16791-16837. [PMID: 39206569 DOI: 10.1039/d4nr02168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although synthesis and design of MOFs are crucial factors to the successful implementation of targeted applications, there is still lack of knowledge among researchers about the synthesis of MOFs and their derived composites for practical applications. For example, many researchers manipulate study results, and it has become quite difficult to quit this habit specifically among the young researchers Undoubtedly, MOFs have become an excellent class of compounds but there are many challenges associated with their improvement to attain diverse applications. It has been noted that MOF-derived materials have gained considerable interest owing to their unique chemical properties. These compounds have exhibited excellent potential in various sectors such as energy, catalysis, sensing and environmental applications. It is worth mentioning that most of the researchers rely on commercially available MOFs for use as precursor supports, but it is an unethical and wrong practice because it prevents the exploration of the hidden diversity of similar materials. The reported studies have significant gaps and flaws, they do not have enough details about the exact parameters used for the synthesis of MOFs and their derived materials. For example, many young researchers claim that MOF-based materials cannot be synthesized as per the reported instructions for large-scale implementation. In this regard, current article provides a comprehensive review of the most recent advancements in the design of MOF-derived materials. The methodologies and applications have been evaluated together with their advantages and drawbacks. Additionally, this review suggests important precautions and solutions to overcome the drawbacks associated with their preparation. Applications of MOF-derived materials in the fields of energy, catalysis, sensing and environment have been discussed. No doubt, these materials have become excellent class but there are still many challenges ahead to specify it for the targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Mamoona Sabir
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| |
Collapse
|
7
|
Chen Z, Zhang T, Zhang X, Cheng W, Chen L, Lu N. A catalytic amplification platform based on Fe 2O 3 nanoparticles decorated graphene nanocomposites for highly sensitive detection of rutin. NANOSCALE ADVANCES 2024:d4na00583j. [PMID: 39323628 PMCID: PMC11420904 DOI: 10.1039/d4na00583j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Exploration of nanocomposites with exceptional catalytic activities is essential for harnessing the unique advantages of each constituent in the domains of pharmaceutical analysis and electrochemical sensing. In this regard, we illustrated the synthesis of iron oxide/N-doped reduced graphene oxide (Fe2O3/N-rGO) nanocomposites through a one-step thermal treatment of iron phthalocyanine (FePc), melamine, and graphene oxide for electrochemical sensing. The large specific surface area and good conductivity of N-rGO can efficiently capture rutin molecules and accelerate electron transport, thereby improving the electrochemical performance. Moreover, the Fe2O3 nanoparticles with distinct electronic characteristics significantly enhanced the detection sensitivity of the constructed electrochemical platform. Because of the outstanding electrical conductivity, an extensive surface area, and synergistic catalysis, Fe2O3/N-rGO was employed as an advanced electrode modifier to build an electrochemical sensing platform for rutin detection. Significantly, the manufactured sensor showed a broad detection range from 7 nM to 150 μM and a high sensitivity of 5632 μA mM-1. Furthermore, the fabricated sensor showed desirable results in terms of stability, selectivity, and practical application. This work presents a facile method to prepare Fe2O3/N-rGO and supplies a valuable example for building metal oxide/graphene nanocomposites for electrochemical analysis.
Collapse
Affiliation(s)
- Zhuzhen Chen
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Tingting Zhang
- Qingdao Cancer Institute, Qingdao University Qingdao 266071 PR China
| | - Xue Zhang
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Wangxing Cheng
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Linwei Chen
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Nannan Lu
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| |
Collapse
|
8
|
Dong S, Wu J, Li L, Zhang Y, Qi S, Xiang M, Yang Z. Facile and efficient synthesis of sweater-ball shaped metal-organic framework/nickel sulfide nanoheterojunction for boosting electrochemical glucose sensing. Talanta 2024; 275:126129. [PMID: 38678929 DOI: 10.1016/j.talanta.2024.126129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
The synthesis of heterojunction materials is regarded as an efficient way to enhance catalytic activities in various catalytic reactions. However, the existing fabrication approaches often rely on complex multi-step synthesis process. In this work, we fabricate sweater-ball shaped nanostructured MOF/TMS (Ni-MOF/NiS1.03) heterojunction by one-pot, one-step solvothermal method. According to the results of discrete Fourier transform (DFT) calculations and experiments, the formation of Ni-MOF/NiS1.03 heterojunction interfaces improves electron transfer and charge redistribution, and increases the adsorption energy of glucose molecules as well, which is conducive to enhance electrochemical activity of electrode materials. The as-prepared Ni-MOF/NiS1.03 heterojunction exhibit enhanced glucose sensitivity, wide detection range and low detection limit. This study paves the way towards the development of MOF-based heterojunctions for electrochemical applications.
Collapse
Affiliation(s)
- Shuang Dong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, PR China
| | - Jing Wu
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China
| | - Le Li
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China
| | - Yuyao Zhang
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China
| | - Shanfei Qi
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, PR China
| | - Meng Xiang
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China.
| | - Zhou Yang
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China.
| |
Collapse
|
9
|
Lv Z, Deng J, Cao T, Lee JY, Luo Y, Mao Y, Kim SH, Wang C, Hwang JH, Kang H, Yan X, Na J. Metal-Organic Frameworks Marry Sponge: New Opportunities for Advanced Water Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5590-5605. [PMID: 38457783 DOI: 10.1021/acs.langmuir.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Metal-organic frameworks (MOFs) have garnered attention across various fields due to their noteworthy features like high specific surface area, substantial porosity, and adjustable performance. In the realm of water treatment, MOFs exhibit great potential for eliminating pollutants such as organics, heavy metals, and oils. Nonetheless, the inherent powder characteristics of MOFs pose challenges in terms of recycling, pipeline blockage, and even secondary pollution in practical applications. Addressing these issues, the incorporation of MOFs into sponges proves to be an effective solution. Strategies like one-pot synthesis, in situ growth, and impregnation are commonly employed for loading MOFs onto sponges. This review comprehensively explores the synthesis strategies of MOFs and sponges, along with their applications in water treatment, aiming to contribute to the ongoing advancement of MOF materials.
Collapse
Affiliation(s)
- Zheng Lv
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jianmian Deng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
| | - Taiyang Cao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jun Young Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yulong Luo
- Faculty of Innovation and Design, City University of Macao, Macao 999078, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Seong Hwan Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jin Hyun Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Haiyan Kang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Xu Yan
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jongbeom Na
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Fan Q, Li X, Dong H, Ni Z, Hu T. ZIF-67 Anchored on MoS 2/rGO Heterostructure for Non-Enzymatic and Visible-Light-Sensitive Photoelectrochemical Biosensing. BIOSENSORS 2024; 14:38. [PMID: 38248415 PMCID: PMC10813494 DOI: 10.3390/bios14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Graphene and graphene-like two-dimensional layered nanomaterials-based photoelectrochemical (PEC) biosensors have recently grown rapidly in popularity thanks to their advantages of high sensitivity and low background signal, which have attracted tremendous attention in ultrahigh sensitive small molecule detection. This work proposes a non-enzymatic and visible-light-sensitive PEC biosensing platform based on ZIF-67@MoS2/rGO composite which is synthesized through a facile and one-step microwave-assisted hydrothermal method. The combination of MoS2 and rGO could construct van der Waals heterostructures, which not only act as visible-light-active nanomaterials, but facilitate charge carriers transfer between the photoelectrode and glassy carbon electrode (GCE). ZIF-67 anchored on MoS2/rGO heterostructures provides large specific surface areas and a high proportion of catalytic sites, which cooperate with MoS2 nanosheets, realizing rapid and efficient enzyme-free electrocatalytic oxidation of glucose. The ZIF-67@MoS2/rGO-modified GCE can realize the rapid and sensitive detection of glucose at low detection voltage, which exhibits a high sensitivity of 12.62 μAmM-1cm-2. Finally, the ZIF-67@MoS2/rGO PEC biosensor is developed by integrating the ZIF-67@MoS2/rGO with a screen-printed electrode (SPE), which exhibits a high sensitivity of 3.479 μAmM-1cm-2 and a low detection limit of 1.39 μM. The biosensor's selectivity, stability, and repeatability are systematically investigated, and its practicability is evaluated by detecting clinical serum samples.
Collapse
Affiliation(s)
| | - Xiao Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; (Q.F.); (H.D.); (Z.N.)
| | | | | | - Tao Hu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; (Q.F.); (H.D.); (Z.N.)
| |
Collapse
|
11
|
Zeng Z, Islamov M, He Y, Day BA, Rosi NL, Wilmer CE, Star A. Size-Based Norfentanyl Detection with SWCNT@UiO-MOF Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1361-1369. [PMID: 38147588 PMCID: PMC10788826 DOI: 10.1021/acsami.3c17503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Single-walled carbon nanotube (SWCNT)@metal-organic framework (MOF) field-effect transistor (FET) sensors generate a signal through analytes restricting ion diffusion around the SWCNT surface. Four composites made up of SWCNTs and UiO-66, UiO-66-NH2, UiO-67, and UiO-67-CH3 were synthesized to explore the detection of norfentanyl (NF) using SWCNT@MOF FET sensors with different pore sizes. Liquid-gated FET devices of SWCNT@UiO-67 showed the highest sensing response toward NF, whereas SWCNT@UiO-66 and SWCNT@UiO-66-NH2 devices showed no sensitivity improvement compared to bare SWCNT. Comparing SWCNT@UiO-67 and SWCNT@UiO-67-CH3 indicated that the sensing response is modulated by not only the size-matching between NF and MOF channel but also NF diffusion within the MOF channel. Additionally, other drug metabolites, including norhydrocodone (NH), benzoylecgonine (BZ), and normorphine (NM) were tested with the SWCNT@UiO-67 sensor. The sensor was not responding toward NH and or BZ but a similar sensing result toward NM because NM has a similar size to NF. The SWCNT@MOF FET sensor can avoid interference from bigger molecules but sensor arrays with different pore sizes and chemistries are needed to improve the specificity.
Collapse
Affiliation(s)
- Zidao Zeng
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Meiirbek Islamov
- Department
of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yiwen He
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brian A. Day
- Department
of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Christopher E. Wilmer
- Department
of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Clinical
and Translational Science Institute, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Clinical
and Translational Science Institute, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Iniyan S, Ren J, Deshmukh S, Rajeswaran K, Jegan G, Hou H, Suryanarayanan V, Murugadoss V, Kathiresan M, Xu BB, Guo Z. An Overview of Metal-organic Framework Based Electrocatalysts: Design and Synthesis for Electrochemical Hydrogen Evolution, Oxygen Evolution, and Carbon Dioxide Reduction Reactions. CHEM REC 2023:e202300317. [PMID: 38054611 DOI: 10.1002/tcr.202300317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Due to the increasing global energy demands, scarce fossil fuel supplies, and environmental issues, the pursued goals of energy technologies are being sustainable, more efficient, accessible, and produce near zero greenhouse gas emissions. Electrochemical water splitting is considered as a highly viable and eco-friendly energy technology. Further, electrochemical carbon dioxide (CO2 ) reduction reaction (CO2 RR) is a cleaner strategy for CO2 utilization and conversion to stable energy (fuels). One of the critical issues in these cleaner technologies is the development of efficient and economical electrocatalyst. Among various materials, metal-organic frameworks (MOFs) are becoming increasingly popular because of their structural tunability, such as pre- and post- synthetic modifications, flexibility in ligand design and its functional groups, and incorporation of different metal nodes, that allows for the design of suitable MOFs with desired quality required for each process. In this review, the design of MOF was discussed for specific process together with different synthetic methods and their effects on the MOF properties. The MOFs as electrocatalysts were highlighted with their performances from the aspects of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical CO2 RR. Finally, the challenges and opportunities in this field are discussed.
Collapse
Affiliation(s)
- S Iniyan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Swapnil Deshmukh
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
- DKTE Society's Textile and Engineering an Autonomous Institute, Ichalkaranji, 416115, India
| | - K Rajeswaran
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - G Jegan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Hua Hou
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Vembu Suryanarayanan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Vignesh Murugadoss
- Membrane and Separation Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - Murugavel Kathiresan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| |
Collapse
|
13
|
Jiang D, Liu T, Chu Z, Wang Y. Advances in nanostructured material-based non-enzymatic electrochemical glucose sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6344-6361. [PMID: 37971394 DOI: 10.1039/d3ay01664a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Non-enzymatic electrochemical sensors that use functional materials to directly catalyze glucose have shown great promise in diabetes management, food control, and bioprocess inspection owing to the advantages of high sensitivity, long-term stability, and low cost. Recently, in order to produce enhanced electrochemical behavior, significant efforts have been devoted to the preparation of functional materials with regular nanostructure, as it provides high specific surface area and well-defined strong active sites for electrochemical sensing. However, the structure-performance correlation in this field has not been reviewed thoroughly in the literature. This review aims to present a comprehensive report on advanced zero- to three-dimensional nanostructures based on the geometric feature and to discuss in depth their structural effects on enzyme-free electrochemical detection of glucose. It starts by illustrating the sensing principles of nanostructured materials, followed by a detailed discussion on the structural effects related to the features of each dimension. The structure-performance correlation is explored by comparing the performance derived from diverse dimensional architectures, which is beneficial for the better design of regular nanostructure to achieve efficient enzyme-free sensing of glucose. Finally, future directions of non-enzymatic electrochemical glucose sensors to solve emerging challenges and further improve the sensing performance are also proposed.
Collapse
Affiliation(s)
- Danfeng Jiang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China.
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| | - Zhenyu Chu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| | - Yi Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China.
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, PR China
| |
Collapse
|
14
|
Li Z, Zeng W, Li Y. Recent Progress in MOF-Based Electrochemical Sensors for Non-Enzymatic Glucose Detection. Molecules 2023; 28:4891. [PMID: 37446552 DOI: 10.3390/molecules28134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, substantial advancements have been made in the development of enzyme-free glucose sensors utilizing pristine metal-organic frameworks (MOFs) and their combinations. This paper provides a comprehensive exploration of various MOF-based glucose sensors, encompassing monometallic MOF sensors as well as multi-metal MOF combinations. These approaches demonstrate improved glucose detection capabilities, facilitated by the augmented surface area and availability of active sites within the MOF structures. Furthermore, the paper delves into the application of MOF complexes and derivatives in enzyme-free glucose sensing. Derivatives incorporating carbon or metal components, such as carbon cloth synthesis, rGO-MOF composites, and core-shell structures incorporating noble metals, exhibit enhanced electrochemical performance. Additionally, the integration of MOFs with foams or biomolecules, such as porphyrins, enhances the electrocatalytic properties for glucose detection. Finally, this paper concludes with an outlook on the future development prospects of enzyme-free glucose MOF sensors.
Collapse
Affiliation(s)
- Ziteng Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
| | - Yanqiong Li
- School of Electronic Information & Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 400030, China
| |
Collapse
|
15
|
Li P, Peng Y, Cai J, Bai Y, Li Q, Pang H. Recent Advances in Metal-Organic Frameworks (MOFs) and Their Composites for Non-Enzymatic Electrochemical Glucose Sensors. Bioengineering (Basel) 2023; 10:733. [PMID: 37370664 DOI: 10.3390/bioengineering10060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, with pressing needs such as diabetes management, the detection of glucose in various substrates has attracted unprecedented interest from researchers in academia and industry. As a relatively new glucose sensor, non-enzymatic target detection has the characteristics of high sensitivity, good stability and simple manufacturing process. However, it is urgent to explore novel materials with low cost, high stability and excellent performance to modify electrodes. Metal-organic frameworks (MOFs) and their composites have the advantages of large surface area, high porosity and high catalytic efficiency, which can be utilized as excellent materials for electrode modification of non-enzymatic electrochemical glucose sensors. However, MOFs and their composites still face various challenges and difficulties that limit their further commercialization. This review introduces the applications and the challenges of MOFs and their composites in non-enzymatic electrochemical glucose sensors. Finally, an outlook on the development of MOFs and their composites is also presented.
Collapse
Affiliation(s)
- Panpan Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinpeng Cai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210008, China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Yi J, Li X, Lv S, Zhu J, Zhang Y, Li X, Cong Y. MOF-derived CeO 2/Co 3O 4-Fe 2O 3@CC nanocomposites as highly sensitive electrochemical sensor for bisphenol a detection. CHEMOSPHERE 2023:139249. [PMID: 37331663 DOI: 10.1016/j.chemosphere.2023.139249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
A novel CeO2/Co3O4-Fe2O3@CC electrode derived from CeCo-MOFs was developed for detecting the endocrine disruptor bisphenol A (BPA). Firstly, bimetallic CeCo-MOFs were prepared by hydrothermal method, and obtained material was calcined to form metal oxides after doping Fe element. The results suggested that hydrophilic carbon cloth (CC) modified with CeO2/Co3O4-Fe2O3 had good conductivity and high electrocatalytic activity. By the analyses of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the introduction of Fe increased the current response and conductivity of the sensor, greatly increasing the effective active area of the electrode. Significantly, electrochemical test proves that the prepared CeO2/Co3O4-Fe2O3@CC had excellent electrochemical response to BPA with a low detection limit of 8.7 nM, an excellent sensitivity of 20.489 μA/μM·cm2, a linear range of 0.5-30 μM, and strong selectivity. In addition, the CeO2/Co3O4-Fe2O3@CC sensor had a high recovery rate for the detection of BPA in real tap water, lake water, soil eluent, seawater, and PET bottle samples, which showed its potential in practical applications. To sum up, the CeO2/Co3O4-Fe2O3@CC sensor prepared in this work had excellent sensing performance, good stability and selectivity for BPA, which can be well used for the detection of BPA.
Collapse
Affiliation(s)
- Jiaxin Yi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinyue Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shiwen Lv
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jining Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yi Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
17
|
Hekmat F, Ataei Kachouei M, Taghaddosi Foshtomi S, Shahrokhian S, Zhu Z. Direct decoration of commercial cotton fabrics by binary nickel-cobalt metal-organic frameworks for flexible glucose sensing in next-generation wearable sensors. Talanta 2023; 257:124375. [PMID: 36821966 DOI: 10.1016/j.talanta.2023.124375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Having a prime significance in diagonsing and predicting the dangerous symptoms of chronic diseases in the early stages, special attention has been drawn by wearable glucose-sensing platforms in recent years. Herein, modified commercial cotton fabrics, decorated with binary Ni-Co metal-organic frameworks (NC-MOFs) through a one-pot scalable hydrothermal route, were directly utilized as flexible electrodes for non-enzymatic glucose amperometric sensing. Glucose sensitivities of 105.2 μA mM-1 cm-2 and 23 μA mM-1 cm-2 were acheived within two distinct linear dynamic ranges of 0.04-3.13 mM and 3.63-8.28 mM, respectively. Receiving benefits from a remarkable glucose sensitivity behavior in co-existence of iso-structures and interferences, rapid response (4.2 s), and remarkable reproducibility and repeatability, NC-MOF-modified cotton fabric electrodes are imensilly promising for developing high-performance wearable glucose sensing platfroms. The sensing performance of fabricated electrodes was further investigated in human blood serum and saliva.
Collapse
Affiliation(s)
- Farzaneh Hekmat
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, 11155-9516, Iran
| | - Matin Ataei Kachouei
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, 11155-9516, Iran
| | | | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, 11155-9516, Iran.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
18
|
Yang Y, Ji W, Yin Y, Wang N, Wu W, Zhang W, Pei S, Liu T, Tao C, Zheng B, Wu Q, Li L. Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection. BIOSENSORS 2023; 13:bios13050508. [PMID: 37232869 DOI: 10.3390/bios13050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Rapid and accurate detection of changes in glucose (Glu) and hydrogen peroxide (H2O2) concentrations is essential for the predictive diagnosis of diseases. Electrochemical biosensors exhibiting high sensitivity, reliable selectivity, and rapid response provide an advantageous and promising solution. A porous two-dimensional conductive metal-organic framework (cMOF), Ni-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), was prepared by using a one-pot method. Subsequently, it was employed to construct enzyme-free paper-based electrochemical sensors by applying mass-producing screen-printing and inkjet-printing techniques. These sensors effectively determined Glu and H2O2 concentrations, achieving low limits of detection of 1.30 μM and 2.13 μM, and high sensitivities of 5573.21 μA μM-1 cm-2 and 179.85 μA μM-1 cm-2, respectively. More importantly, the Ni-HHTP-based electrochemical sensors showed an ability to analyze real biological samples by successfully distinguishing human serum from artificial sweat samples. This work provides a new perspective for the use of cMOFs in the field of enzyme-free electrochemical sensing, highlighting their potential for future applications in the design and development of new multifunctional and high-performance flexible electronic sensors.
Collapse
Affiliation(s)
- Ya Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Yutao Yin
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Wanxia Wu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Wei Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Siying Pei
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Tianwei Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Chao Tao
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
19
|
Cyclodextrin-metal-organic frameworks in molecular delivery, detection, separation, and capture: An updated critical review. Carbohydr Polym 2023; 306:120598. [PMID: 36746588 DOI: 10.1016/j.carbpol.2023.120598] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination compounds with tuneable structures and controllable functions. However, the biological toxicity of traditional MOFs materials is often inevitable, making their application in the biological field have many limitations. Therefore, frontier research increasingly focuses on developing biocompatible MOFs materials. Cyclodextrins (CDs), derived from starch, are favored by various biomaterials due to their good biosafety and are often seen in the preparation and application of MOFs materials. This review describes the features of MOFs materials, and the various preparation methods of CD-MOFs are analyzed in detail from the perspective of CD classification. Additionally, the promising applications of CD-MOFs materials for delivery, detection, separation, and capture of active molecules in recent studies are systematically discussed and summarized. In terms of safety, the CD-MOFs materials are meticulously summarized. Finally, this review presents the challenges and future prospects regarding the current CD-MOFs-based materials, which will shed new light on the application of such materials in various fields.
Collapse
|
20
|
Nandhini C, Arul P, Huang ST, Tominaga M, Huang CH. Electrochemical sensing of dual biomolecules in live cells and whole blood samples: A flexible gold wire-modified copper-organic framework-based hybrid composite. Bioelectrochemistry 2023; 152:108434. [PMID: 37028136 DOI: 10.1016/j.bioelechem.2023.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
For clinical research, the precise measurement of hydrogen peroxide (H2O2) and glucose (Glu) is of paramount importance, due to their imbalanced concentrations in blood glucose, and reactive oxygen species (ROS) play a huge role in COVID-19 viral disease. It is critical to construct and develop a simple, rapid, flexible, long-term, and sensitive detection of H2O2 and glucose. In this paper, we have developed a unique morphological structure of MOF(Cu) on a single-walled carbon nanotube-modified gold wire (swnt@gw). Highly designed frameworks with nanotube composites enhance electron rate-transfer behavior while extending conductance and electroactive surface area.The composite sensing system delivers wide linear-range concentrations, low detection limit, and interference-free performance in co-existence with other biomolecules and metal ions. Endogenous quantitative tracking of H2O2 was performed in macrophage live-cells with the help of a strong stimulator lipopolysaccharide.The composite device was effectively utilized for the measurement of H2O2 and glucose in turbid samples of whole blood and milk samples without a pretreatment process. The practical results of biofluids showed favorable voltammetric results and acceptance recovery percentage levels between 97.49 and 98.88%. Finally, a flexible MOF-based hybrid system may provide a suitable detection platform in the construction of electro-biosensors and hold potential promise for clinical-sensory applications.
Collapse
Affiliation(s)
- C Nandhini
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - P Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Masato Tominaga
- Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Chih-Hung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| |
Collapse
|
21
|
Mariella Babu A, Varghese A. Electrochemical Deposition for Metal Organic Frameworks: Advanced Energy, Catalysis, Sensing and Separation Applications. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
22
|
Zha X, Yang W, Shi L, Zeng Q, Xu J, Yang Y. 2D bimetallic organic framework nanosheets for high-performance wearable power source and real-time monitoring of glucose. Dalton Trans 2023; 52:2631-2640. [PMID: 36744545 DOI: 10.1039/d2dt03311a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetics often prick their fingertips to measure the glucose levels in their blood. However, this traditional method not only causes prolonged pain but also increases the risk of infection. Hence, in this study, a non-invasive flexible glucose biosensor with high sensitivity was fabricated. Specifically, NiCo metal-organic frameworks (NiCo-MOFs) served as the electrode material of a micro-supercapacitor and sensing material of a glucose sensor. The electrochemical tests verified that the prominent sensitivity of the NiCo bimetal product is 1422.2 μA mM-1 cm-2. The micro-supercapacitor based on the as-fabricated NiCo-MOFs showed a high energy density of 11.5 mW h cm-2 at the power density 0.26 mW cm-2. In addition, the as-designed glucose device exhibited an excellent sensitivity of 0.31 μA μM-1. Furthermore, a flexible energy storage and glucose detection system was successfully prepared by further integrating the micro-supercapacitor and glucose sensor. The smart detector could accurately and conveniently measure the glucose concentration in sweat in real-time. Therefore, the wearable real-time sensing device displays feasible application for non-invasive glucose monitoring and health management.
Collapse
Affiliation(s)
- Xiaoting Zha
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Wenyao Yang
- Chongqing Engineering Research Center of New Energy Storage Devices and Applications, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Liuwei Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Qi Zeng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Jianhua Xu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Yajie Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China. .,Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| |
Collapse
|
23
|
Cardoso AG, Viltres H, Ortega GA, Phung V, Grewal R, Mozaffari H, Ahmed SR, Rajabzadeh AR, Srinivasan S. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
24
|
Fu X, Ding B, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Daniel M, Mathew G, Anpo M, Neppolian B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Direct decoration of carbon nanohorns with binary nickel-cobalt sulfide nanosheets towards non-enzymatic glucose sensing in human fluids. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Li X, Dong H, Fan Q, Chen K, Sun D, Hu T, Ni Z. One-pot, rapid microwave-assisted synthesis of bimetallic metal–organic framework for efficient enzyme-free glucose detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Cun JE, Fan X, Pan Q, Gao W, Luo K, He B, Pu Y. Copper-based metal-organic frameworks for biomedical applications. Adv Colloid Interface Sci 2022; 305:102686. [PMID: 35523098 DOI: 10.1016/j.cis.2022.102686] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of important porous, crystalline materials composed of metal ions (clusters) and organic ligands. Owing to the unique redox chemistry, photochemical and electrical property, and catalytic activity of Cu2+/+, copper-based MOFs (Cu-MOFs) have been recently and extensively explored in various biomedical fields. In this review, we first make a brief introduction to the synthesis of Cu-MOFs and their composites, and highlight the recent synthetic strategies of two most studied representatives, three-dimensional HKUST-1 and two-dimensional Cu-TCPP. The recent advances of Cu-MOFs in the applications of cancer treatment, bacterial inhibition, biosensing, biocatalysis, and wound healing are summarized and discussed. Furthermore, we propose a prospect of the future development of Cu-MOFs in biomedical fields and beyond.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
29
|
Aliakbari R, Ramakrishna S, Kowsari E, Marfavi Y, Cheshmeh ZA, Ajdari FB, Kiaei Z, Torkzaban H, Ershadi M. Scalable preparation of MOFs and MOF-containing hybrid materials for use in sustainable refrigeration systems for a greener environment: a comprehensive review as well as technical and statistical analysis of patents. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Narayanamoorthi E, Arul P, Gowthaman N, Abraham John S. Morphology dependent electrocatalytic activity of copper based porous organic frameworks via diverse chain length of linkers and counterions of metal precursor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Du Q, Liao Y, Shi N, Sun S, Liao X, Yin G, Huang Z, Pu X, Wang J. Facile synthesis of bimetallic metal–organic frameworks on nickel foam for a high performance non-enzymatic glucose sensor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Recent advances in the application of metal organic frameworks using in advanced oxidation progresses for pollutants degradation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Hu Q, Qin J, Wang XF, Ran GY, Wang Q, Liu GX, Ma JP, Ge JY, Wang HY. Cu-Based Conductive MOF Grown in situ on Cu Foam as a Highly Selective and Stable Non-Enzymatic Glucose Sensor. Front Chem 2021; 9:786970. [PMID: 34912785 PMCID: PMC8666423 DOI: 10.3389/fchem.2021.786970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
A non-enzymatic electrochemical sensor for glucose detection is executed by using a conductive metal–organic framework (MOF) Cu-MOF, which is built from the 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) ligand and copper acetate by hydrothermal reaction. The Cu-MOF demonstrates superior electrocatalytic activity for glucose oxidation under alkaline pH conditions. As an excellent non-enzymatic sensor, the Cu-MOF grown on Cu foam (Cu-MOF/CF) displays an ultra-low detection limit of 0.076 μM through a wide concentration range (0.001–0.95 mM) and a strong sensitivity of 30,030 mA μM−1 cm−2. Overall, the Cu-MOF/CF exhibits a low detection limit, high selectivity, excellent stability, fast response time, and good practical application feasibility for glucose detection and can promote the development of MOF materials in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Qin Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiao-Feng Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Guang-Ying Ran
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Qiang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Guang-Xiang Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Jian-Ping Ma
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Hai-Ying Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China.,School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
34
|
Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 2021; 199:113867. [PMID: 34890884 DOI: 10.1016/j.bios.2021.113867] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/22/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) are remarkably porous materials that have sparked a lot of interest in recent years because of their fascinating architectures and variety of potential applications. This paper systematically summarizes recent breakthroughs in MOFs and their derivatives with different materials such as, carbon nanotubes, graphene oxides, carbon fibers, enzymes, antibodies and aptamers etc. for enhanced electrochemical sensing applications. Furthermore, an overview part is highlighted, which provides some insights into the future prospects and directions of MOFs and their derivatives in electrochemical sensing, with the goal of overcoming present limitations by pursuing more inventive ways. This overview can perhaps provide some creative ideas for future research on MOF-based materials in this rapidly expanding field.
Collapse
|
35
|
Lu N, Yan X, Gu Y, Zhang T, Liu Y, Song Y, Xu Z, Xing Y, Li X, Zhang Z, Zhai S. Cobalt-decorated 3D hybrid nanozyme: A catalytic amplification platform with intrinsic oxidase-like activity. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Tunable electrochemical behavior of dicarboxylic acids anchored Co-MOF: Sensitive determination of rutin in pharmaceutical samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Ultrasonic synthesis of bismuth-organic framework intercalated carbon nanofibers: A dual electrocatalyst for trace-level monitoring of nitro hazards. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Yuan K, Zhang Y, Huang S, Yang S, Zhao S, Liu F, Peng Q, Zhao Y, Zhang G, Fan J, Zang G. Copper Nanoflowers on Carbon Cloth as a Flexible Electrode Toward Both Enzymeless Electrocatalytic Glucose and H
2
O
2. ELECTROANAL 2021. [DOI: 10.1002/elan.202100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kun Yuan
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Yuchan Zhang
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Shihao Huang
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Shengfei Yang
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Shuang Zhao
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University Chongqing 400030 China
| | - Fangxin Liu
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Qianyu Peng
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Yinping Zhao
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Guangyuan Zhang
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Jingchuan Fan
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| | - Guangchao Zang
- Laboratory of Tissue and Cell Biology Lab Teaching & Management Center Chongqing Medical University Chongqing 400016 P.R. China
| |
Collapse
|
39
|
Peng Q, Zhang Y, Yang S, Yuwen T, Liu Y, Fan J, Zang G. Glucose determination behaviour of gold microspheres-electrodeposited carbon cloth flexible electrodes in neutral media. Anal Chim Acta 2021; 1159:338442. [PMID: 33867044 DOI: 10.1016/j.aca.2021.338442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Despite numerous advances in the field of nonenzymatic glucose detection, monitoring glucose in physiological applications is still a challenge and is mostly limited to electrode surface modification. This study proposes a simple method for electrodepositing cotton-like gold microspheres (CGMs) on a carbon cloth (CC) flexible electrode, with the potential for the functional supporting substrate to monitor glucose in a neutral environment. It was demonstrated that the voltammetric response of glucose oxidation increased with increases in glucose concentration in the 3D functional flexible substrate; moreover, the amperometric response of glucose oxidation increased over time. The results indicate that the functional flexible electrode-made of gold microspheres-based carbon cloth with a predefined geometry and pore-architecture network to promote the medium-permeation and synergetic effects between CGMs and CC-can be a suitable platform for measuring glucose variation in environments with neutral pH. This is particularly relevant because the oxygen-containing functional groups on the CC surface increase the dehydrogenation rate of glucose oxidation in neutral phosphate-buffered saline.
Collapse
Affiliation(s)
- Qianyu Peng
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yuchan Zhang
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shengfei Yang
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Tianyi Yuwen
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yangkun Liu
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Jingchuan Fan
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Guangchao Zang
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
40
|
Arul P, Huang ST, Gowthaman NSK, Mani G, Jeromiyas N, Shankar S, John SA. Electrocatalyst based on Ni-MOF intercalated with amino acid-functionalized graphene nanoplatelets for the determination of endocrine disruptor bisphenol A. Anal Chim Acta 2021; 1150:338228. [PMID: 33583553 DOI: 10.1016/j.aca.2021.338228] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Affiliation(s)
- P Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan.
| | - N S K Gowthaman
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram, 624 302, Dindigul, Tamilnadu, India
| | - G Mani
- Department of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Nithiya Jeromiyas
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sekar Shankar
- School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram, 624 302, Dindigul, Tamilnadu, India
| |
Collapse
|
41
|
Ming SS, Gowthaman N, Lim H, Arul P, Narayanamoorthi E, Ibrahim I, Jaafar H, John SA. Aluminium MOF fabricated electrochemical sensor for the ultra-sensitive detection of hydroquinone in water samples. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Sun Q, Ding J, Chen D, Han C, Jiang M, Li T, Hu Y, Qian J, Huang S. Silica‐Templated Metal Organic Framework‐Derived Hierarchically Porous Cobalt Oxide in Nitrogen‐Doped Carbon Nanomaterials for Electrochemical Glucose Sensing. ChemElectroChem 2021. [DOI: 10.1002/celc.202001588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiuhong Sun
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Junyang Ding
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Cheng Han
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Minghua Jiang
- Clinical Laboratory Centre The Second Affiliated Hospital and Children's Hospital of Wenzhou Medical University Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Ting‐Ting Li
- Research Center of Applied Solid State Chemistry Ningbo University Ningbo 315211 P. R. China
| | - Yue Hu
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Shaoming Huang
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
43
|
Arul P, Huang ST, Gowthaman NSK, Govindasamy M, Jeromiyas N. Surfactant-free solvothermal synthesis of Cu-MOF via protonation-deprotonation approach: A morphological dependent electrocatalytic activity for therapeutic drugs. Mikrochim Acta 2020; 187:650. [PMID: 33165679 DOI: 10.1007/s00604-020-04631-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
A copper-1,4-naphthalenedicarboxylic acid-based organic framework (Cu-NDCA MOF) with different morphologies was synthesized by solvothermal synthetic route via a simple protonation-deprotonation approach. The synthesized Cu-NDCA MOFs were analyzed by diverse microscopic and spectral techniques. The FE-SEM and TEM image results exhibited the flake-like (FL), partial anisotropic (PAT), and anisotropic (AT)-Cu-NDCA MOFs formation obtained at different pH (3.0, 7.0, and 9.0) of the reaction medium. The AT-Cu-NDCA MOF/GC electrode not only increases the electroactive surface area but also boosts the electron transfer rate reaction compared to other modified electrodes (PAT- and FL-Cu-NDCA MOFs/GCEs). Under the optimized conditions, the modified electrode (AT-Cu-NDCA MOF) exhibited a sharp oxidation peak (+ 0.46 V vs. Ag/AgCl) and higher current response for rutin. The electrode provides a wide linear range from 1 × 10-9 to 50 × 10-6 M, a low detection limit of 1.21 × 10-10 M, LOQ of 0.001 μM, and sensitivity of 0.149 μA μM-1 cm-2. The AT-Cu-NDCA MOF/GC electrode exhibited good stability (RSD = 3.52 ± 0.02% over 8 days of storage), and excellent reproducibility (RSD = 2.62 ± 0.02% (n = 3)). The modified electrode was applied to the determination of rutin in apple, orange, and lemon samples with good recoveries (99.79-99.91, 99.24-99.69, and 99.53-99.83, respectively). Graphical abstract Anisotropic structure of Cu-NDCA MOFs and its modification on glassy carbon electrode for ultra-sensitive determination of rutin in fruit samples.
Collapse
Affiliation(s)
- P Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan.
| | - N S K Gowthaman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mani Govindasamy
- Department of Materials Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Nithiya Jeromiyas
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| |
Collapse
|
44
|
Mie Y, Katagai S, Ikegami M. Electrochemical Oxidation of Monosaccharides at Nanoporous Gold with Controlled Atomic Surface Orientation and Non-Enzymatic Galactose Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5632. [PMID: 33019754 PMCID: PMC7582603 DOI: 10.3390/s20195632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Non-enzymatic saccharide sensors are of great interest in diagnostics, but their non-selectivity limits their practical diagnostic abilities. In this study, we investigated the electrochemical oxidation of monosaccharides at nanoporous gold (NPG) catalysts with different contributions of surface crystallographic orientations. Fructose elicited no clear electrochemical response, but glucose, galactose, and mannose produced clear oxidative current. The onset potentials for oxidation of these saccharides depended on the surface atomic structure of the NPG. The oxidation potential was approximately 100 mV less positive at the Au(100)-enhanced NPG than at the Au(111)-enhanced NPG. Furthermore, the voltammetric responses significantly differed among the saccharides. Galactose was oxidized at less positive potential and exhibited a higher current response than the other saccharides. This tendency was enhanced in the presence of chloride ions. These features enabled the selective and sensitive detection of galactose at an NPG electrode without enzymes under physiological conditions. A linear range of 10 μM to 1.8 mM was obtained in the calibration plot, which was comparable to those in previously reported enzymatic galactose sensors. Thus, we demonstrated that controlling the crystallographic orientation on the nanostructured electrode surface is useful in developing electrochemical sensors.
Collapse
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (S.K.); (M.I.)
| | | | | |
Collapse
|