1
|
Lourenço C, Moreira F, Igreja R, Martins G. Flexible, Electrochemical Skin-Like Platform for Inflammatory Biomarker Monitoring. Macromol Biosci 2024; 24:e2400287. [PMID: 39292822 DOI: 10.1002/mabi.202400287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/07/2024] [Indexed: 09/20/2024]
Abstract
Addressing global challenges in wound management has greatly encouraged the emergence of home diagnosis and monitoring devices. This technological shift has accelerated the development of new skin patch sensors for continuous health monitoring. A key requirement is the creation of flexible platforms capable of mimicking human skin features. Here, for the first time, an innovative, highly adaptable electrochemical biosensor with molecularly imprinted polymers (MIPs) is customized for the detection of the inflammatory biomarker interleukin-6 (IL-6). The 3-electrode gold pattern is geometrically standardized onto a 6 µm thick polyimide flexible membrane, an optically transparent, and biocompatible polymeric substrate. Subsequently, a biomimetic sensing layer specifically designed for the detection of IL-6 target is produced on these transducers. The obtained MIP biosensor shows a good linear response within the concentration range 50 pg mL-1-50 ng mL-1, with a low limit of detection (8 pg mL-1). X-ray photoelectron spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations confirm the modifications of the flexible gold transducer. After optimization, the biosensing device shows remarkable potential in terms of sensitivity, selectivity, and reproducibility. Overall, the integration of a low-cost electrochemical sensor on biocompatible flexible polymers opens the way for a new generation of monitoring tools with higher accuracy, less invasiveness, and greater patient comfort.
Collapse
Affiliation(s)
- Carolina Lourenço
- BioMark@ISEP, School of Engineering of Polytechnique School of Porto, Porto, 4200-072, Portugal
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, 2829-516, Portugal
| | - Felismina Moreira
- BioMark@ISEP, School of Engineering of Polytechnique School of Porto, Porto, 4200-072, Portugal
- LABBELS/CEB, Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal
- LabRISE-CIETI, School of Engineering of Polytechnique School of Porto, Porto, 4200-072, Portugal
| | - Rui Igreja
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, 2829-516, Portugal
| | - Gabriela Martins
- BioMark@ISEP, School of Engineering of Polytechnique School of Porto, Porto, 4200-072, Portugal
- LABBELS/CEB, Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal
- LabRISE-CIETI, School of Engineering of Polytechnique School of Porto, Porto, 4200-072, Portugal
| |
Collapse
|
2
|
Behboudikhiavi S, Chanteux G, Babu B, Faniel S, Marlec F, Robert K, Magnin D, Lucaccioni F, Omale JO, Apostol P, Piraux L, Lethien C, Vlad A. Direct Electrodeposition of Electrically Conducting Ni 3(HITP) 2 MOF Nanostructures for Micro-Supercapacitor Integration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401509. [PMID: 38698603 DOI: 10.1002/smll.202401509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/20/2024] [Indexed: 05/05/2024]
Abstract
Micro-supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large-scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double-layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal-organic frameworks (MOFs). However, techniques for conformal deposition at micro- and nanoscale of these materials are complex, costly, and hard to upscale. Herein, the study reports direct, one step non-sacrificial anodic electrochemical deposition of Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 - Ni3(HITP)2, a porous and electrically conducting MOF. Employing this strategy enables the growth of Ni3(HITP)2 films on a variety of 2D substrates as well as on 3D nanostructured substrates to form Ni3(HITP)2 nanotubes and Pt@ Ni3(HITP)2 core-shell nanowires. Based on the optimal electrodeposition protocols, Ni3(HITP)2 films interdigitated micro-supercapacitors are fabricated and tested as a proof of concept.
Collapse
Affiliation(s)
- Sepideh Behboudikhiavi
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Géraldine Chanteux
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Binson Babu
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Sébastien Faniel
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Florent Marlec
- Institut d'Electronique, de Microélectronique et de Nanotechnologies, Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, 59000, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, Amiens, Cedex, 80039, France
| | - Kevin Robert
- Institut d'Electronique, de Microélectronique et de Nanotechnologies, Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, 59000, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, Amiens, Cedex, 80039, France
| | - Delphine Magnin
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Fabio Lucaccioni
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Joel Ojonugwa Omale
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Petru Apostol
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Luc Piraux
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Christophe Lethien
- Institut d'Electronique, de Microélectronique et de Nanotechnologies, Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, 59000, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, Amiens, Cedex, 80039, France
- Institut Universitaire de France (IUF), Saint-Michel 103, Paris, 75005, France
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
3
|
Yang CR, Lin YS, Wu RS, Lin CJ, Chu HW, Huang CC, Anand A, Unnikrishnan B, Chang HT. Dual-emissive carbonized polymer dots for the ratiometric fluorescence imaging of singlet oxygen in living cells. J Colloid Interface Sci 2023; 634:575-585. [PMID: 36549206 DOI: 10.1016/j.jcis.2022.12.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Singlet oxygen (1O2) is a type of reactive oxygen species (ROS), playing a vital role in the physiological and pathophysiological processes. Specific probes for monitoring intracellular 1O2 still remain challenging. In this study, we develop a ratiometric fluorescent probe for the real-time intracellular detection of 1O2 using o-phenylenediamine-derived carbonized polymer dots (o-PD CPDs). The o-PD CPDs possessing dual-excitation-emission properties (blue and yellow fluorescence) were successfully synthesized in a two-phase system (water/acetonitrile) using an ionic liquid tetrabutylammonium hexafluorophosphate as a supporting electrolyte through the electrolysis of o-PD. The o-PD CPDs can act as a photosensitizer to produce 1O2 upon white LED irradiation, in turn, the generated 1O2 selectively quenches the yellow emission of the o-PD CPDs. This quenching behavior is ascribed to the specific cycloaddition reaction between 1O2 and alkene groups in the polymer scaffolds on o-PD CPDs. The interior carbon core can be a reliable internal standard since its blue fluorescence intensity remains unchanged in the presence of 1O2. The ratiometric response of o-PD CPDs is selective toward 1O2 against other ROS species. The developed o-PD CPDs have been successfully applied to monitor the 1O2 level in the intracellular environment. Furthermore, in the inflammatory neutrophil cell model, o-PD CPDs can also detect the 1O2 and other ROS species such as hypochlorous acid after phorbol 12-myristate 13-acetate (PMA)-induced inflammation. Through the dual-channel fluorescence imaging, the ratiometric response of o-PD CPDs shows great potential for detecting endogenous and stimulating 1O2in vivo.
Collapse
Affiliation(s)
- Cheng-Ruei Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ren-Siang Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Han-Wei Chu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
5
|
Mechanochemical Synthesis of Polyanilines and Their Nanocomposites: A Critical Review. Polymers (Basel) 2022; 15:polym15010133. [PMID: 36616492 PMCID: PMC9823481 DOI: 10.3390/polym15010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
The mechanochemical synthesis of polyanilines (PANIs), made by oxidative polymerization of anilines, is reviewed. First, previous knowledge of the polymerization reaction in solution is discussed to understand the effect of different parameters: oxidant/monomer ratio, added acid, oxidant, temperature and water content on the properties of the conducting polymers (molecular weight, degradation, doping/oxidation level, conductivity, and nanostructure). The work on mechanochemical polymerization (MCP) of anilines is analyzed in view of previous data in solution, and published data are critically reconsidered to clarify the interpretation of experimental results. A key factor is the production of acids during polymerization, which is often overlooked. The production of gaseous HCl during MCP of aniline hydrochloride is experimentally observed. Since some experiments involves the addition of small amounts of water, the kinetics and heat balance of the reaction with concentrated solutions were simulated. A simple experiment shows fast (<2 min) heating of the reaction mixture to the boiling point of water and temperature increments are observed during MCP in a mortar. The form and sizes of PANI nanostructures made by MCP or solution are compared. The extensive work on the production of nanocomposites by MCP of anilines together with different nanomaterials (porous clays, graphene, carbon nanotubes, metal, and oxide nanoparticles) is also described.
Collapse
|
7
|
A green protocol for the electrochemical synthesis of a fluorescent dye with antibacterial activity from imipramine oxidation. Sci Rep 2022; 12:4921. [PMID: 35318352 PMCID: PMC8941072 DOI: 10.1038/s41598-022-08770-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Electrochemical oxidation of imipramine (IMP) has been studied in aqueous solutions by cyclic voltammetry and controlled-potential coulometry techniques. Our voltammetric results show a complex behavior for oxidation of IMP at different pH values. In this study, we focused our attention on the electrochemical oxidation of IMP at a pH of about 5. Under these conditions, our results show that the oxidation of IMP leads to the formation of a unique dimer of IMP (DIMP). The structure of synthesized dimer is fully characterized by UV-visible, FTIR, 1H NMR, 13C NMR and mass spectrometry techniques. It seems that the first step in the oxidation of IMP is the cleavage of the alkyl group (formation of IMPH). After this, a domino oxidation-hydroxylation-dimerization-oxidation reaction, converts IMPH to (E)-10,10',11,11'-tetrahydro-[2,2'-bidibenzo[b,f]azepinylidene]-1,1'(5H,5'H)-dione (DIMP). The synthesis of DIMP is performed in an aqueous solution under mild conditions, without the need for any catalyst or oxidant. Based on our electrochemical findings as well as the identification of the final product, a possible reaction mechanism for IMP oxidation has been proposed. Conjugated double bonds in the DIMP structure cause the compound to become colored with sufficient fluorescence activity (excitation wave-length 535 nm and emission wave-length 625 nm). Moreover, DIMP has been evaluated for in vitro antibacterial. The antibacterial tests indicated that DIMP showed good antibacterial performance against all examined gram-positive and gram-negative bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Shigella sonnei).
Collapse
|