1
|
Parveen N, Da'na E, Taha A. Sustainable fabrication of Fe 2O 3/C nanoparticles via Acacia niloticaextract for enhanced supercapacitor performance. NANOTECHNOLOGY 2025; 36:115704. [PMID: 39740250 DOI: 10.1088/1361-6528/ada44a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/31/2024] [Indexed: 01/02/2025]
Abstract
This research investigates the eco-friendly production of iron oxide nanoparticles and their combination with carbon to create the FeC-1 and FeC-2 NPs, using seedless pods ofAcacia nilotica. These pods, rich in tannins and flavonoids, serve as a natural reducing, stabilizing, and carbon source. The study details the synthesis of FeC NPs through a non-toxic, green method and examines the influence of varying concentrations ofA. niloticaextract (ANE) on the electrochemical characteristics of the resulting n FeC-1 and FeC-2 electrodes. Both FeC-1 and FeC-2 NPs were tested extensively using cyclic voltammetry and galvanostatic charge-discharge methods to evaluate their pseudocapacitive properties in a three-electrode setup. The FeC-2 electrodes showed much better performance, achieving a specific capacitance of 482.85 F g-1, compared to FeC-1's 155.71 F g-1. This enhanced capacity is attributed to an optimal content that notably boosts conductivity. Additionally, FeC-2 showed impressive cyclic stability, retaining approximately 80% capacity at a constant current density. These findings underscore the potential of using ANE for developing cost-effective and environmentally benign FeC-1 and FeC-2 NPs with promising applications in high-performance supercapacitors.
Collapse
Affiliation(s)
- Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, PO Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Enshirah Da'na
- Faculty of Engineering Technology, Al-Balqa Applied University, PO Box 15008, Amman 11134, Jordan
| | - Amel Taha
- Department of Chemistry, College of Science, King Faisal University, PO Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, PO Box 11121, Khartoum, Sudan
| |
Collapse
|
2
|
Kannan K, Chinnaiah K, Gurushankar K, Krishnamoorthi R, Chen YS, Murphin Kumar PS, Li YY. Investigation of the Electrochemical Behavior of CuO-NiO-Co 3O 4 Nanocomposites for Enhanced Supercapacitor Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3976. [PMID: 39203154 PMCID: PMC11355728 DOI: 10.3390/ma17163976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
In the present study, composites incorporating NiO-Co3O4 (NC) and CuO-NiO-Co3O4 (CNC) as active electrode materials were produced through the hydrothermal method and their performance was investigated systematically. The composition, formation, and nanocomposite structure of the fabricated material were characterized by XRD, FTIR, and UV-Vis. The FE-SEM analysis revealed the presence of rod and spherical mixed morphologies. The prepared NC and CNC samples were utilized as supercapacitor electrodes, demonstrating specific capacitances of 262 Fg-1 at a current density of 1 Ag-1. Interestingly, the CNC composite displayed a notable long-term cyclic stability 84.9%, which was observed even after 5000 charge-discharge cycles. The exceptional electrochemical properties observed can be accredited to the harmonious effects of copper oxide addition, the hollow structure, and various metal oxides. This approach holds promise for the development of supercapacitor electrodes. These findings collectively indicate that the hydrothermally synthesized NC and CNC nanocomposites exhibit potential as high-performance electrodes for supercapacitor applications.
Collapse
Affiliation(s)
- Karthik Kannan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi 621301, Taiwan;
| | - Karuppaiya Chinnaiah
- Multifunctional Laboratory, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar 626126, Tamil Nadu, India; (K.C.); (K.G.)
| | - Krishnamoorthy Gurushankar
- Multifunctional Laboratory, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar 626126, Tamil Nadu, India; (K.C.); (K.G.)
- Laboratory of Computational Modelling Drugs, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - Raman Krishnamoorthi
- Pharamaceutics Laboratory, Graduate Institute of National Products, Chang Gung University, Kweishan, Taoyuan 33305, Taiwan;
| | - Yong-Song Chen
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi 621301, Taiwan;
| | - Paskalis Sahaya Murphin Kumar
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621301, Taiwan; (P.S.M.K.); (Y.-Y.L.)
- Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi 621301, Taiwan
| | - Yuan-Yao Li
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621301, Taiwan; (P.S.M.K.); (Y.-Y.L.)
- Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi 621301, Taiwan
| |
Collapse
|
3
|
Liu D, Kim S, Choi WM. Facile Synthesis of Nitrogen-Doped Graphene Quantum Dots/MnCO 3/ZnMn 2O 4 on Ni Foam Composites for High-Performance Supercapacitor Electrodes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:884. [PMID: 38399135 PMCID: PMC10890349 DOI: 10.3390/ma17040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
This study reports the facile synthesis of rationally designed composite materials consisting of nitrogen-doped graphene quantum dots (N-GQDs) and MnCO3/ZnMn2O4 (N/MC/ZM) on Ni foam using a simple hydrothermal method to produce high-performance supercapacitor applications. The N/MC/ZM composite was uniformly synthesized on a Ni foam surface with the hierarchical structure of microparticles and nanosheets, and the uniform deposition of N-GQDs on a MC/ZM surface was observed. The incorporation of N-GQDs with MC/ZM provides good conductivity, charge transfer, and electrolyte diffusion for a better electrochemical performance. The N/MC/ZM composite electrode delivered a high specific capacitance of 960.6 F·g-1 at 1 A·g-1, low internal resistance, and remarkable cycling stability over 10,000 charge-discharge cycles. Additionally, an all-flexible solid-state asymmetric supercapacitor (ASC) device was fabricated using the N/MC/ZM composite electrode. The fabricated ASC device produced a maximum energy density of 58.4 Wh·kg-1 at a power density of 800 W·kg-1 and showed a stable capacitive performance while being bent, with good mechanical stability. These results provide a promising and effective strategy for developing supercapacitor electrodes with a high areal capacitance and high energy density.
Collapse
Affiliation(s)
- Di Liu
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (D.L.); (S.K.)
| | - Soeun Kim
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (D.L.); (S.K.)
- Division of Advanced Material, Korea Research Institution of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Won Mook Choi
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (D.L.); (S.K.)
| |
Collapse
|
4
|
Investigation of structural, morphological and electrochemical properties of mos2/pani/sno2 nanocomposites for energy storage applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Shao D, Li X, Yang M, Li J, Chen R, Zheng X, Niu Y, Qi Y. Synthesis of porous Mn2O3 architecture for supercapacitor electrode application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Inside–outside OH– incursion involved in the fabrication of hierarchical nanoflake assembled three-dimensional flower-like α-Co(OH)2 for use in high-performance aqueous symmetric supercapacitor applications. J Adv Res 2022:S2090-1232(22)00238-7. [PMID: 36280142 PMCID: PMC10403652 DOI: 10.1016/j.jare.2022.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION The energy industry has been challenged by the current high population and high energy consumption, forcing the development of effective and efficient supercapacitor devices. The crucial issues until now have been high production cost, deprived cyclic stability, and squat energy density. To resolve these problems, various approaches have been taken, such as the development of long-life electrode materials with high capacity, rapid charging, and slow discharging to overcome poor life cycle stability. OBJECTIVES In the present work we focus on fabricating cost-effective unique-morphology, high-surface-area alpha-Co(OH)2 for application in an aqueous-electrolyte symmetric supercapacitor. METHODS In this study, hierarchical nanoflakes assembled in three-dimensional (3D) flower-shaped cobalt hydroxide (HN-3DF-α-Co(OH)2) electrode were synthesized using the solvothermal method with sodium dodecylbenzene sulfonate (SDBS) and methanol as solvents. Spectroscopic and microscopic techniques were used to characterize fabricated HN-3DF-Co(OH)2, which revealed that the materials electrode exhibited the alpha phase with a hierarchical flower-like structure. A half-cell electrochemical assembly (three-electrode assemble cell) and symmetric full cell (two-electrode assemble cell) were examined in an aqueous electrolyte. RESULTS In three-electrode assembly cells, HN-3DF-α-Co(OH)2 exhibited 719.5 Fg-1 specific capacitance (Csp) at 1 Ag-1 with excellent cyclic retention stability of approximately 88% after 3000 cycles. In two-electrode symmetric supercapacitive systems, HN-3DF-α-Co(OH)2 achieved a maximum Csp of 70.3 Fg-1 at 0.4 Ag-1 with the highest energy density of approximately 6.25 Wh/kg at a power density of 328.94 W/kg. The fabricated two-electrode assembly cell with the HN-3DF-α-Co(OH)2 electrode retained cyclic stability of approximately 85% after 5000 repeated charge and discharge cycles. CONCLUSION Solvothermally-synthesized, optimized HN-3DF-α-Co(OH)2 showed outstanding electrochemical performance results in three- and two-electrode systems. This unique aqueous symmetric supercapacitor can be used to design cost-effective symmetric capacitors based on metal hydroxide.
Collapse
|
7
|
Development of Binder Free Interconnected 3D Flower of NiZn2O4 as an Advanced Electrode Materials for Supercapacitor Applications. CRYSTALS 2021. [DOI: 10.3390/cryst12010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The design and development of electrode materials for energy-storage applications is an area of prime focus around the globe because of the shortage of natural resources. In this study, we developed a method for preparing a novel three-dimensional binder-free pseudocapacitive NiZn2O4 active material, which was grown directly over nickel foam (NiZn2O4@3D-NF), using a simple one-step hydrothermal process. The material was characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques were employed to evaluate the pseudocapacitive performance of the NiZn2O4 active material in a three-electrode assembly cell. The prepared NiZn2O4@3D-NF electrode exhibited an excellent specific capacitance, of 1706.25 F/g, compared to that of the NiO@3D-NF (1050 F/g) electrode because it has the bimetallic characteristics of both zinc and nickel. The NiZn2O4@3D-NF electrode showed better cyclic stability (87.5% retention) compared to the NiO@3D-NF electrode (80% retention) after 5000 cycles at a fixed current density, which also supports the durability of the NiZn2O4@3D-NF electrode. The characteristics of NiZn2O4@3D-NF include corrosion resistance, high conductivity, an abundance of active sites for electrochemical reaction, a high surface area, and synergism between the bimetallic oxides, which make it a suitable candidate for potential application in the field of energy storage.
Collapse
|
8
|
Shinde S, Karade SS, Maile NC, Yadav H, Ghodake GS, Jagadale A, Kim DY. Green synthesis of novel CuCo2O4 nanocomposite for stable hybrid supercapacitors by deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
The preparation and displacement performances of a hollow structure microsphere with swelling–deswelling properties for enhanced oil recovery (EOR). Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03712-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Development of Ti/Ni Nanolayered Structures to Be a New Candidate for Energy Storage Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Development of electrochemical supercapacitor electrode is the best way to improve the performance and conductivity of the alone materials and support energy storage devices. In this work, cyanate anions have used as building blocks to build series of nanolayered materials based on Ti/Ni layered double hydroxides (LDHs). The structural and morphological characteristics of the prepared Ti/Ni LDHs were examined using different techniques. The electrochemical supercapacitive behavior of the prepared LDHs was observed in the three-assembly electrochemical cell. These results showed that the optimized ratio of the nickel and titanium plays an important role to enhance the electrochemical performance of the LDHs. The optimized Ti/Ni LDHs, which has the highest content of titanium, showed the highest specific capacitance (675 F/g) value. In this trend, this LDH also retain a high percentage of the cyclic retention after long cyclic charging-discharging process. The enhanced performance could be due to the double layer structure, enough interplanar distance between the layer, and large number of exposed active site within the double layer structure of the LDHs. Finally, although there are no reports for the electrochemical supercapacitive performance of Ti/Ni LDHs in the literature, it is interesting to produce a new candidate for energy storage applications.
Collapse
|