1
|
Zhou R, Zhang J, Long J, Li L, Ye Q, Xu X, Wang F. Cobalt phosphide nanoarrays on a borate-modified nickel foam substrate as an efficient dual-electrocatalyst for overall water splitting. J Colloid Interface Sci 2025; 683:509-520. [PMID: 39700560 DOI: 10.1016/j.jcis.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Developing efficient non-noble metal dual-functional electrocatalysts for overall water splitting is essential for the production of green hydrogen. Given the significant advantages of self-supporting electrodes, regulating the growth of self-supporting nanoarrays on a conductive substrate is conducive to improving the electrocatalytic activity. In this work, aligned cobalt phosphide (CoP) nanowire arrays grown on borate-modified Ni foam substrate (CoP/R-NF) were utilized as a bifunctional electrocatalyst for both hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) in alkaline solution. The borate interfacial layer regulated the growth behavior of CoP nanowires, promoting a tip-enhanced electric field effect, facilitating an enhanced bimetallic synergistic effect. The CoP/R-NF electrode showed substantial catalytic activity for HER (η10 = 35 mV, 70 mV dec-1) and OER (241 mV, 32 mV dec-1). Moreover, a low cell voltage of 1.50 V to drive 10 mA cm-2 current density for overall water-splitting was achieved in an alkaline water electrolyzer, with long-term durability of 200 h at 100 mA cm-2, indicating the potential application of CoP/R-NF as a bifunctional catalyst for clean and renewable energy utilization. Such a synthetic strategy could pave the way for the development of non-noble bifunctional electrocatalysts for comprehensive water splitting.
Collapse
Affiliation(s)
- Ruijuan Zhou
- School of Chemistry & Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Jinghao Zhang
- School of Chemistry & Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Junxi Long
- School of Chemistry & Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Lingfeng Li
- School of Chemistry & Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Qinglan Ye
- School of Chemistry & Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Xuetang Xu
- School of Chemistry & Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China.
| | - Fan Wang
- School of Chemistry & Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China.
| |
Collapse
|
2
|
Aalling‐Frederiksen O, Schlegel N, Punke S, Anker AS, Wiberg GKH, Wang B, Edelvang‐Pejrup J, Holde FB, Salinas‐Quezada MP, Magnard NPL, Graversen LG, Arenz M, Pittkowski RK, Jensen KMØ. Structural Changes of NiFe Layered Double Hydroxides During the Oxygen Evolution Reaction: A Diffraction and Total Scattering Operando Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411211. [PMID: 39981961 PMCID: PMC11947514 DOI: 10.1002/smll.202411211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Indexed: 02/22/2025]
Abstract
NiFe-layered double hydroxides (LDHs) are promising electrocatalysts for the oxygen evolution reaction (OER) in alkaline media. Here, operando X-ray diffraction (XRD) and X-ray total scattering are used with Pair Distribution Function (PDF) analysis to investigate the atomic structure of the catalytically active material and follow structural changes under operating conditions. XRD shows an interlayer contraction under applied oxidative potential, which relates to a transition from the α-LDH to the γ-LDH phase. The phase transition is reversible, and the α-LDH structure is recovered at 1.3 VRHE. However, PDF analysis shows an irreversible increase in the stacking disorder under operating conditions, along with a decrease in the LDH sheet size. The analysis thus shows that the operating conditions induce a breakdown of the particles leading to a decrease in crystallite size.
Collapse
Affiliation(s)
| | - Nicolas Schlegel
- Department of Chemistry and Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBernSwitzerland
| | - Stefanie Punke
- Department of Chemistry and Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| | - Andy S. Anker
- Department of Chemistry and Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| | - Gustav K. H. Wiberg
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBernSwitzerland
| | - Baiyu Wang
- Department of Chemistry and Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| | - Jens Edelvang‐Pejrup
- Department of Chemistry and Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| | - Freja B. Holde
- Department of Chemistry and Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| | | | - Nicolas P. L. Magnard
- Department of Chemistry and Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| | - Laura G. Graversen
- Department of Chemistry and Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| | - Matthias Arenz
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBernSwitzerland
| | - Rebecca K. Pittkowski
- Department of Chemistry and Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| | - Kirsten M. Ø. Jensen
- Department of Chemistry and Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Liu Y, Wang Y, Fornasiero P, Tian G, Strasser P, Yang XY. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems. Angew Chem Int Ed Engl 2024; 63:e202412087. [PMID: 39205621 DOI: 10.1002/anie.202412087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Direct electrochemical seawater splitting is a renewable, scalable, and potentially economic approach for green hydrogen production in environments where ultra-pure water is not readily available. However, issues related to low durability caused by complex ions in seawater pose great challenges for its industrialization. In this review, a mechanistic analysis of durability issues of electrolytic seawater splitting is discussed. We critically analyze the development of seawater electrolysis and identify the durability challenges at both the anode and cathode. Particular emphasis is given to elucidating rational strategies for designing electrocatalysts/electrodes/interfaces with long lifetimes in realistic seawater including inducing passivating anion layers, preferential OH-adsorption, employing anti-corrosion materials, fabricating protective layers, immobilizing Cl- on the surface of electrocatalysts, tailoring Cl- adsorption sites, inhibition of OH- binding to Mg2+ and Ca2+, inhibition of Mg and Ca hydroxide precipitation adherence, and co-electrosynthesis of nano-sized Mg hydroxides. Synthesis methods of electrocatalysts/electrodes and innovations in electrolyzer are also discussed. Furthermore, the prospects for developing seawater splitting technologies for clean hydrogen generation are summarized. We found that researchers have rethought the role of Cl- ions, as well as more attention to cathodic reaction and electrolyzers, which is conducive to accelerate the commercialization of seawater electrolysis.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Wang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste and ICCOM-CNR and INSTM Trieste Research Units, 34127, Trieste, Italy
| | - Ge Tian
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Peter Strasser
- Technical University Berlin, Department of Chemistry, 10623, Berlin, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
4
|
Galkina I, Faid AY, Jiang W, Scheepers F, Borowski P, Sunde S, Shviro M, Lehnert W, Mechler AK. Stability of Ni-Fe-Layered Double Hydroxide Under Long-Term Operation in AEM Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311047. [PMID: 38269475 DOI: 10.1002/smll.202311047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Anion exchange membrane water electrolysis (AEMWE) is an attractive method for green hydrogen production. It allows the use of non-platinum group metal catalysts and can achieve performance comparable to proton exchange membrane water electrolyzers due to recent technological advances. While current systems already show high performances with available materials, research gaps remain in understanding electrode durability and degradation behavior. In this study, the performance and degradation tracking of a Ni3Fe-LDH-based single-cell is implemented and investigated through the correlation of electrochemical data using chemical and physical characterization methods. A performance stability of 1000 h, with a degradation rate of 84 µV h-1 at 1 A cm-2 is achieved, presenting the Ni3Fe-LDH-based cell as a stable and cost-attractive AEMWE system. The results show that the conductivity of the formed Ni-Fe-phase is one key to obtaining high electrolyzer performance and that, despite Fe leaching, change in anion-conducting binder compound, and morphological changes inside the catalyst bulk, the Ni3Fe-LDH-based single-cells demonstrate high performance and durability. The work reveals the importance of longer stability tests and presents a holistic approach of electrochemical tracking and post-mortem analysis that offers a guideline for investigating electrode degradation behavior over extended measurement periods.
Collapse
Affiliation(s)
- Irina Galkina
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
| | - Alaa Y Faid
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Wulyu Jiang
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
| | - Fabian Scheepers
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
| | | | - Svein Sunde
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Meital Shviro
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, CO, 80401, USA
| | - Werner Lehnert
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
- RWTH Aachen University, Faculty of Mechanical Engineering, Modeling in Electrochemical Process Engineering, 52056, Aachen, Germany
| | - Anna K Mechler
- RWTH Aachen University, Electrochemical Reaction Engineering (AVT.ERT), 52056, Aachen, Germany
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Fundamentals of Electrochemistry (IEK-9), 52425, Jülich, Germany
- JARA-ENERGY, 52056, Aachen, Germany
| |
Collapse
|
5
|
Sun Y, Cai Q, Wang Z, Li Z, Zhou Q, Li X, Zhao D, Lu J, Tian S, Li Y, Wang S. Two-Dimensional SnS Mediates NiFe-LDH-Layered Electrocatalyst toward Boosting OER Activity for Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:23054-23060. [PMID: 38668627 PMCID: PMC11086328 DOI: 10.1021/acsami.3c18458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
NiFe-layered double hydroxides (NiFe-LDHs), as promising electrocatalysts, have received significant research attention for hydrogen and oxygen generation through water splitting. However, the slow oxidation kinetics of NiFe-LDH, due to the limited number of active sites and the low conductivity, hinders the improvement of the water-splitting efficiency. Therefore, to overcome the obstacles, two-dimensional (2D) SnS was first explored to tailor the prepared NiFe-LDH via the hydrothermal method. A NiFe-LDH/SnS heterojunction is built, which is observed from the microstructural investigations. SnS incorporation could greatly improve the conductivity of the NiFe-LDH sheets, which was reflected by the reduced charge transfer resistance. Moreover, SnS layers modulated the electronic environment around the active sites, favoring the adsorption of intermediates during the oxygen evolution reaction (OER) process, which was verified by density functional theory calculations. A synergistic effect induced by the NiFe-LDH/SnS heterostructure promoted the OER activities in electrical, electronic, and energetic aspects. Consequently, the as-prepared NiFe-LDH/SnS electrocatalyst greatly improved the electrocatalytic performance, exhibiting 20% and 27% reductions in the overpotential and Tafel slope compared with those of pristine NiFe-LDH, respectively. The results provide a strategy for regulating NiFe-based electrocatalysts by using emerging 2D materials to enhance water-splitting efficiency.
Collapse
Affiliation(s)
- Yaxun Sun
- Key
Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous
Region, College of Science, Tibet University, Lhasa 850000, China
| | - Qingguo Cai
- Key
Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous
Region, College of Science, Tibet University, Lhasa 850000, China
| | - Ze Wang
- Key
Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous
Region, College of Science, Tibet University, Lhasa 850000, China
| | - Zhichun Li
- Department
of Health Technology and Informatics, The
Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Qianyu Zhou
- Key
Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous
Region, College of Science, Tibet University, Lhasa 850000, China
| | - Xin Li
- Key
Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous
Region, College of Science, Tibet University, Lhasa 850000, China
| | - Dongye Zhao
- Key
Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous
Region, College of Science, Tibet University, Lhasa 850000, China
| | - Jianfeng Lu
- State
Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Shouqin Tian
- State
Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yong Li
- Key
Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous
Region, College of Science, Tibet University, Lhasa 850000, China
| | - Shifeng Wang
- Key
Laboratory of Plateau Oxygen and Living Environment of Tibet Autonomous
Region, College of Science, Tibet University, Lhasa 850000, China
| |
Collapse
|
6
|
Luo G, Feng H, Zhang R, Zheng Y, Tu R, Shen Q. Synthesis of NiFe-layered double hydroxides using triethanolamine-complexed precursors as oxygen evolution reaction catalysts: effects of Fe valence. Dalton Trans 2024; 53:1735-1745. [PMID: 38168804 DOI: 10.1039/d3dt03373b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The synthesis of highly efficient NiFe-layered double hydroxides (NiFe-LDHs) to catalyze the oxygen evolution reaction (OER) is urgent and challenging. Herein, NiFe-FeCl3-x and NiFe-FeCl2-x samples (where FeCl3 and FeCl2 represent the Fe sources and x represents the imposed reaction time: 6, 12, and 24 h) were prepared via one-pot hydrothermal synthesis using Fe sources characterized by Fe(III) or Fe(II) valence states. In the presence of triethanolamine, when FeCl3 was used as the Fe source, pure NiFe-LDH was obtained, whose crystallinity increased with increasing hydrothermal treatment time. In contrast, when FeCl2 was used as the Fe source, a mixture of NiFe-LDH, Fe2O3, and trace amounts of Fe3O4 was obtained. The content of NiFe-LDH in the mixture increased under longer hydrothermal treatment and NiFe-FeCl3-x catalysts exhibited better OER performance than NiFe-FeCl2-x catalysts. Specifically, NiFe-FeCl3-6 afforded the highest OER performance with an overpotential of 246.8 mV at 10 mA cm-2 and a Tafel slope of 46.1 mV dec-1. Herein, we investigated the effects of the valence state of Fe precursors on the structures and OER activities of the prepared catalysts; the mechanism of NiFe-LDH formation via hydrothermal synthesis in the presence of triethanolamine was also proposed.
Collapse
Affiliation(s)
- Guoqiang Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haoran Feng
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ruizhi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yingqiu Zheng
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rong Tu
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qiang Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Chen X, Zhang Y, Yang J, Xiao JD, Yang Z, Wang J. Boosting Oxygen Evolution Performance of Nickel-Iron Layered Double Hydroxides by Controlling Oxygen Vacancies and Structural Disorder via n-Butyllithium Treatment. Inorg Chem 2023; 62:19795-19803. [PMID: 37987702 DOI: 10.1021/acs.inorgchem.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nickel-iron-based layered double hydroxides (NiFe-LDHs) are promising catalysts for the oxygen evolution reaction (OER) because of their high activity, availability, and low cost. Defect engineering, particularly the formation of oxygen vacancies, can improve the catalytic activity of NiFe-LDHs. However, the controllable introduction of uniform oxygen vacancies remains challenging. Herein, an n-butyllithium treatment method is developed to tune oxygen vacancy defects and change the degree of amorphization in NiFe-LDHs via deep reduction, followed by partial oxidization at low temperatures. Interestingly, the Ni in the NiFe-LDHs is selectively reduced to the alloy state by n-butyllithium, whereas Fe is not. The different structural transformations of Ni and Fe during the treatment successfully produce an oxygen-defect-rich amorphous/crystalline electrocatalyst. Under optimal conditions, the treated NiFe-LDHs exhibit high OER activity with an overpotential of 223 mV at 10 mA cm-2 (68 mV lower than that of a commercial IrO2 electrocatalyst) and long-term stability. Notably, the n-butyllithium treatment can be applied to other electrocatalysts, such as CoFe-LDHs and IrO2 (treated IrO2 with an overpotential of 197 mV at 10 mA cm-2). This n-butyllithium reduction/partial oxidization treatment constitutes a novel top-down strategy for the controllable modification of metal oxide structures, with various energy-related applications.
Collapse
Affiliation(s)
- Xifan Chen
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Yameng Zhang
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Jia Yang
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Zhengkun Yang
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Junzhong Wang
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Zhao Z, Zhao Q, Zhou L, Wei Y, Lei B, Zhang H, Cai W. Layered double hydroxide nanosheets-built porous film-covered Au nanoarrays as enrichment and enhancement chips for efficient SERS detection of trace styrene. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132156. [PMID: 37523958 DOI: 10.1016/j.jhazmat.2023.132156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Styrene, a prevalent volatile organic compounds (VOCs), is very harmful to atmosphere and humans. Consequently, the development of efficient detection technologies for styrene is of high importance, which is still in challenge! In this work, we crafted a layered double hydroxide (LDH) porous film-coated gold nanoarray, designed to act as a surface enhanced Raman spectroscopy (SERS) chip for the efficient and portable detection of gaseous styrene. This chip features a covering layer composed of cross-linked LDH nanosheets, notable for their porous structure and high specific surface area. When the covering layer is 100-300 nm in thickness, this composite chip has significant enrichment effect and strong SERS performance to gaseous styrene with a lowest detectable concentration below 1 ppb (4.64 ×10-3 mg/m3), and can response within 10 s, showing the rapid response and high sensitivity. Additionally, the chip has strong anti-interference capabilities and maintains excellent response to styrene, even in mixed benzene-VOCs gases. The exceptional SERS performances of this chip is ascribed to its LDH covering layer-induced styrene-enrichment and structurally-enhanced SERS performances. This study provides a simple route and practical chip for the rapid and ultrasensitive SERS-based detection of gaseous styrene, which is also potentially beneficial for the detection of other gaseous VOCs.
Collapse
Affiliation(s)
- Zhipeng Zhao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Qian Zhao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Le Zhou
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yi Wei
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Biao Lei
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China.
| |
Collapse
|
9
|
Yao H, Le F, Jia W, Cao Y, Sheng R, Lu Z, Chen X, Jia D. Dual Electronic Modulations on NiFeV Hydroxide@FeO x Boost Electrochemical Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301294. [PMID: 37127885 DOI: 10.1002/smll.202301294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Nickel-iron based hydroxides have been proven to be excellent oxygen evolution reaction (OER) electrocatalysts, whereas they are inactive toward hydrogen evolution reaction (HER), which severely limits their large-scale applications in electrochemical water splitting. Herein, a heterostructure consisted of NiFeV hydroxide and iron oxide supported on iron foam (NiFeV@FeOx /IF) has been designed as a highly efficient bifunctional (OER and HER) electrocatalyst. The V doping and intimate contact between NiFeV hydroxide and FeOx not only improve the entire electrical conductivity of the catalyst but also afford more high-valence Ni which serves as active sites for OER. Meanwhile, the introduction of V and FeOx reduces the electron density on lattice oxygen, which greatly facilitates desorption of Hads . All of these endow the NiFeV@FeOx /IF with exceptionally low overpotentials of 218 and 105 mV to achieve a current density of 100 mA cm-2 for OER and HER, respectively. More impressively, the electrolyzer requires an ultra-low cell voltage of 1.57 V to achieve 100 mA cm-2 and displays superior electrochemical stability for 180 h, which outperforms commercial RuO2 ||Pt/C and most of the representative catalysts reported to date. This work provides a unique route for developing high-efficiency electrocatalyst for overall water splitting.
Collapse
Affiliation(s)
- Haibin Yao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Fuhe Le
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Wei Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Rui Sheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Xianhao Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| |
Collapse
|
10
|
Prabagar JS, Sneha Y, Tenzin T, Shahmoradi B, Rtimi S, Wantala K, Jenkins D, Shivaraju HP. Photocatalytic transfer of aqueous nitrogen into ammonia using nickel-titanium-layered double hydroxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90341-90351. [PMID: 36520285 DOI: 10.1007/s11356-022-24726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The development of solar-driven transfer of atmospheric nitrogen into ammonia is one of the green and sustainable strategies in industrial ammonia production. Nickel-titanium-layered double hydroxide (NiTi-LDH) was synthesised using the soft-chemical process for atmospheric nitrogen fixation application under photocatalysis in an aqueous system. NiTi-LDH was investigated using advanced characterisation techniques and confirmed the potential oxygen vacancies and/or surface defects owing to better photocatalytic activity under the solar spectrum. It also exhibited a bandgap of 2.8 eV that revealed its promising visible-light catalytic activities. A maximum of 33.52 µmol L-1 aqueous NH3 was obtained by continuous nitrogen (99.9% purity) supply into the photoreactor under an LED light source. Atmospheric nitrogen supply (≈78%) yielded 14.67 µmol L-1 aqueous NH3 within 60 min but gradually reduced to 3.6 µmol L-1 at 330 min. Interestingly, in weak acidic pH, 20.90 µmol L-1 NH3 was produced compared to 11.51 µmol L-1 NH3 in basic pH. The application of NiTi-LDH for visible-light harvesting capability and photoreduction of atmospheric N2 into NH3 thereby opens a new horizon of eco-friendly NH3 production using natural sunlight as alternative driving energy.
Collapse
Affiliation(s)
- Jijoe Samuel Prabagar
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Yadav Sneha
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India
- Center for Water, Food and Energy, GREENS Trust, Harikaranahalli Village-572215, Dombaranahalli Post, Tumkur District, Turuvekere Taluka, Karnataka, India
| | - Thinley Tenzin
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Behzad Shahmoradi
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sami Rtimi
- Environment and Health, Global Institute for Water, Rue de Chantepoulet 10, Geneve, Switzerland
| | - Kitirote Wantala
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, PL4 8AA, UK
| | - Harikaranahalli Puttaiah Shivaraju
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
- Center for Water, Food and Energy, GREENS Trust, Harikaranahalli Village-572215, Dombaranahalli Post, Tumkur District, Turuvekere Taluka, Karnataka, India.
| |
Collapse
|
11
|
Wang L, Cheng Y, Xiong J, Zhao Z, Zhang D, Hu Z, Zhang H, Wu Q, Chen L. Sea urchin-like amorphous MgNiCo mixed metal hydroxide nanoarrays for efficient overall water splitting under industrial electrolytic conditions. Dalton Trans 2023; 52:3438-3448. [PMID: 36825845 DOI: 10.1039/d3dt00160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Exploring amorphous mixed transition metal hydroxide electrocatalysts with high performance and stability for overall water splitting is a difficult challenge under industrial electrolytic conditions. Herein, a sea urchin-like amorphous MgNiCo hydroxide (MgxNi1-xCo-OH, 0 < x < 1), self-assembled from nanowire arrays, is synthesized by the hydrothermal process. The synergistic effect between Mg and Ni/Co adjusts their crystal structure and morphology, which can improve the inherent activity and provide more active sites. Benefiting from the favorable structural features, Mg0.5Ni0.5Co-OH exhibits superior electrocatalytic oxygen and hydrogen evolution reaction (OER and HER) activity with a low overpotential of 277 and 110 mV (10 mA cm-2) in 1 M KOH at 25 °C. Furthermore, overpotentials of 239 and 197 mV are required to achieve a current density of 50 mA cm-2 for the OER and HER under simulated industrial electrolysis conditions (5 M KOH at 65 °C). Notably, Mg0.5Ni0.5Co-OH remarkably accelerates water splitting with a low voltage of 1.938 and 1.699 V for 50 mA cm-2 in 1 M KOH at 25 °C and 5 M KOH at 65 °C, respectively. This work presents a novel amorphous strategy to design and construct sea urchin-like mixed metal hydroxide bifunctional efficient electrocatalysts for industrial applications.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Yikun Cheng
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Jiahao Xiong
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Zhiwen Zhao
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Dingbo Zhang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Zhiyan Hu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Haoyu Zhang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Qin Wu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Long Chen
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
12
|
Iron-doped Nickel Sulfide Nanoparticles Grown on N-doped Reduced Graphene Oxide as Efficient Electrocatalysts for Oxygen Evolution Reaction. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
13
|
Liu T, Liu W, Ma M, Guo L, Cui R, Cheng D, Cao D. Constructing nickel vanadium phosphide nanoarrays with highly active heterointerfaces for water oxidation in alkali media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Wang X, Lei Y, Gao Y, Yun X, Wang Z, Fan F, Ma Y. Multi-Function of the Ni Interlayer in the Design of a BiVO 4-Based Photoanode for Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48682-48693. [PMID: 36265862 DOI: 10.1021/acsami.2c13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BiVO4 with an appropriate band structure is considered to be an ideal candidate for photoanodes. However, slow water oxidation kinetics and low charge separation efficiency seriously restrict its application. To address these issues, an NF/N/BVO photoanode with a hierarchical network structure was successfully constructed by direct-current magnetron sputtering of Ni followed by electrochemical deposition of nickel-iron layered double hydroxide (NiFe-LDH) on BiVO4. A photocurrent density of 4.50 mA/cm2 was obtained for NF/N/BVO, which was 2.4 times that for pristine BiVO4. The introduction of the Ni layer contributed to the following growth of NiFe-LDH nanosheets with larger size, which acted as active sites and speeded up water oxidation kinetics. Furthermore, surface photovoltage microscopy revealed that Ni and NiFe-LDH acted as the electron collector and hole reservoir, respectively. The co-existence of the two components constituted a highly efficient surface charge separation structure, which was one of the important issues for the excellent water oxidation activity.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yubo Lei
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xinyi Yun
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zenglin Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, the Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Yi Ma
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
15
|
Gan Y, Li Z, Ye Y, Dai X, Nie F, Yin X, Ren Z, Wu B, Cao Y, Cai R, Zhang X, Song W. Doping Mo into NiFe LDH/NiSe Heterostructure to Enhance Oxygen Evolution Activity by Synergistically Facilitating Electronic Modulation and Surface Reconstruction. CHEMSUSCHEM 2022; 15:e202201205. [PMID: 36043340 DOI: 10.1002/cssc.202201205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
It is of great significance to design highly efficient electrocatalysts with abundant earth elements instead of precious metals for water splitting. Herein, Mo-doped NiFe-layered double hydroxides/NiSe heterostructure (Mo-NiFe LDH/NiSe) was fabricated by coupling Mo-doped NiFe LDH and NiSe on nickel foam (NF). The heterostructure electrocatalyst showed ultra-low overpotential (250 mV) and remarkable durability for oxygen evolution reaction (OER) at 150 mA cm-2 . Both theoretical and experimental results confirmed that Mo doping and interfacial synergism induced the interfacial charge redistribution and the lifted d-band center to weaken the energy barrier (EB) of the formation of OOH* . Mo doping also facilitated the surface reconstruction of NiFe LDH into Ni(Fe)OOH as the active sites under electro-oxidation process. This work provides a facile strategy for electronic modulation and surface reconstruction of OER electrocatalyst by transition metal doping and heterostructure generation.
Collapse
Affiliation(s)
- Yonghao Gan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Zhi Li
- College of Science, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China
| | - Ying Ye
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Xiaoping Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Fei Nie
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Xueli Yin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Ziteng Ren
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Baoqiang Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Yihua Cao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Run Cai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China) E-mail: E
| | - Weiyu Song
- College of Science, China University of Petroleum-Beijing, 18 Fuxue Road, Changping District, Beijing, 102249, P. R. China
| |
Collapse
|
16
|
Tian H, Zhang K, Feng X, Chen J, Lou Y. Self-supported CoMoO 4/NiFe-LDH core-shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution. Dalton Trans 2022; 51:13762-13770. [PMID: 36018311 DOI: 10.1039/d2dt02167f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing high-performance catalysts is an effective strategy for speeding up the oxygen evolution reaction (OER) and increasing production efficiency. Here, a core-shell electrocatalyst consisting of CoMoO4 nanorods grown in situ on nickel foam substrate covered by nickel-iron layered double hydroxide (NiFe-LDH) via electrodeposition was demonstrated (CoMoO4/NiFe-LDH@NF). Experimental investigations revealed that self-supporting and binder-free electrodes ensured that the catalysts exposed an abundance of active sites, faster electron transfer, and excellent long-cycle stability. The NiFe-LDH shell with a crystalline-amorphous dual structure served as an accurate active material, lowering the energy barrier and contributing more catalytic sites for water oxidation. Furthermore, the core CoMoO4 nanorods not only effectively avoided the accumulation of NiFe-LDH to increase the electrochemically active area but also acted as a highway for electrons from the active site to the substrate to promote the OER kinetics. Specifically, CoMoO4/NiFe-LDH@NF exhibited lower overpotential (180 mV at 10 mA cm-2) and smaller Tafel slope (34 mV dec-1) than pure CoMoO4@NF and NiFe-LDH@NF, revealing its excellent catalytic performance and fast intrinsic reaction kinetics. In addition, CoMoO4/NiFe-LDH@NF exhibited long-term stability of more than 20 h at 50 mA cm-2, further demonstrating its potential for practical applications. These findings pointed to a potential option for building innovative OER catalysts.
Collapse
Affiliation(s)
- Haoze Tian
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and device, Southeast University, Nanjing 211189, PR China.
| | - Ke Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and device, Southeast University, Nanjing 211189, PR China.
| | - Xiaoan Feng
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and device, Southeast University, Nanjing 211189, PR China.
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and device, Southeast University, Nanjing 211189, PR China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and device, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
17
|
Yin X, Hua Y, Hao W, Yang J, Gao Z. Hierarchical nanocomposites of nickel/iron-layered double hydroxide ultrathin nanosheets strong-coupled with nanocarbon networks for enhanced oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Chang Q, Zhang X, Wang B, Niu J, Yang Z, Wang W. Fundamental understanding of electrocatalysis over layered double hydroxides from the aspects of crystal and electronic structures. NANOSCALE 2022; 14:1107-1122. [PMID: 34985485 DOI: 10.1039/d1nr07355a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Layered double hydroxides (LDHs) composed of octahedral ligand units centered with various transition metal atoms display unique electronic structures and thus attract significant attention in the field of electrocatalytic oxygen evolution reactions (OER). Intensive experimental explorations have therefore been carried out to investigate the LDHs synthesis, amorphous control, intrinsic material modifications, interfacing with other phases, strain, etc. There is still the need for a fundamental understanding of the structure-property relations, which could hinder the design of the next generation of the LDHs catalysts. In this review, we firstly provide the crystal structure information accompanied by the corresponding electronic structures. Then, we discuss the conflicts of the active sites on the NiFe LDHs and propose the synergistic cooperation among the ligand units during OER to deliver a different angle for understanding the current structure-property relations beyond the single-site-based catalysis process. In the next section of the OER process, the linear relationship-induced theoretical limit of the overpotential is further discussed based on the fundamental aspects. To break up the linear relations, we have summarized the current strategies for optimizing the OER performance. Lastly, based on the understanding gained above, the perspective of the research challenges and opportunities are proposed.
Collapse
Affiliation(s)
- Qingfang Chang
- School of Physics, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007, People's Republic of China.
| | - Xilin Zhang
- School of Physics, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007, People's Republic of China.
| | - Bin Wang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, 300211, China
| | - Zongxian Yang
- School of Physics, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007, People's Republic of China.
| | - Weichao Wang
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
19
|
Ma J, He W, Meng F, Fu Y. 2-Methylimidazole-induced synthesis of 2D amorphous FeCoNi ternary hydroxides nanosheets by mechanochemical approach for oxygen evolution reaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Junchao Ma
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Wenxiu He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Fanbao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
20
|
Hou X, Li J, Zheng J, Li L, Chu W. Introducing Oxygen Vacancies to NiFe LDH through Electrochemistry Reduction to Promote Oxygen Evolution Reaction. Dalton Trans 2022; 51:13970-13977. [DOI: 10.1039/d2dt00749e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transition metal hydroxide NiFe LDH is a promising oxygen evolution reaction (OER) catalyst. Surface engineering, such as the introduction of oxygen vacancies into NiFe LDH, has been reported to...
Collapse
|
21
|
Hu X, Zhang L, Li S, Chen J, Zhang B, Zheng Z, He H, Luo S, Xie A. High catalytic performance of nano-flowered Mg-doped NiCo layered double hydroxides for the oxygen evolution reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj03563d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered double hydroxides (LDHs) are one of the ideal functional materials for the oxygen evolution reaction (OER) because of their special configuration and good electrochemical activity.
Collapse
Affiliation(s)
- Xiabing Hu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Lidong Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shuyu Li
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiayan Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Baoying Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhiyuan Zheng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Hongyu He
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shiping Luo
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Aijuan Xie
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
22
|
Yu J, Lu K, Wang C, Wang Z, Fan C, Bai G, Wang G, Yu F. Modification of NiFe layered double hydroxide by lanthanum doping for boosting water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Yu R, Liu D, Yuan M, Wang Y, Ye C, Li J, Du Y. Universal MOF-Mediated synthesis of 2D CoNi-based layered triple hydroxides electrocatalyst for efficient oxygen evolution reaction. J Colloid Interface Sci 2021; 602:612-618. [PMID: 34147751 DOI: 10.1016/j.jcis.2021.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Developing low-budget, stable, and high-performance electrocatalyst toward oxygen evolution reaction (OER) is of pivotal significance in the fields of energy conversion and storage. Herein, a universal metal organic framework (MOF)-mediated method for the synthesis of two-dimensional (2D) layered triple hydroxides (LTHs) nanosheets with ultrathin nature has been developed. It is interesting to disclose that the CoNi-based LTHs possess better electrochemical catalytic performance, giving superior performance to commercial RuO2 catalysts. Remarkably, benefitting from the ultrathin nanosheet configuration, optimized electronic structure, and strong synergistic effect, the optimized CoNiFe LTHs nanosheets show excellent OER performance with an ultralow overpotential of 262 mV at a current density of 10 mA cm-2 and a small Tafel slope of 88.1 mV dec-1. This work provides a promising avenue to develop low-cost and high-performance layered ternary hydroxide electrocatalysts.
Collapse
Affiliation(s)
- Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Changqing Ye
- Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
24
|
Zhou L, Pan D, Guo Z, Li J, Huang S, Song J. Simple Construction of Amorphous Monometallic Cobalt‐Based Selenite Nanoparticles using Ball Milling for Highly Efficient Oxygen Evolution Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202100123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ling‐Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Dong‐Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Zheng‐Han Guo
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Jin‐Kun Li
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Sai Huang
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| | - Jun‐Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Lihu Street 1800 Wuxi 214122 P. R. China
| |
Collapse
|
25
|
Tang J, Jiang X, Tang L, Li Y, Zheng Q, Huo Y, Lin D. Ultrathin vanadium hydroxide nanosheets assembled on the surface of Ni-Fe-layered hydroxides as hierarchical catalysts for the oxygen evolution reaction. Dalton Trans 2021; 50:1053-1059. [PMID: 33502421 DOI: 10.1039/d0dt03802d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Developing state-of-the-art non-noble metal catalysts for the oxygen evolution reaction holds a key to the production of electrolytic hydrogen. Herein, self-supported hierarchical NiFe LDH/VO(OH)2 nanoflowers/nanosheets grown on a Ni foam have been synthesized via a two-step hydrothermal method. Numerous fine VO(OH)2 nanosheets grown on NiFe LDH nanoflowers enlarge the contact area for the electrolyte penetration and facilitate ion diffusion, while the three-dimensional structure of the material also provides an extensive active surface area and plentiful accessible active sites. Moreover, the strong synergistic interaction between VO(OH)2 and NiFe LDHs subtly modulates the electronic environment, accelerating the electron/charge transfer. As a result, the catalyst exhibits excellent electrochemical performance for OER giving a voltage of 1.51 V to achieve the current density of 100 mA cm-2 and possessed a Tafel slope of 65 mV dec-1 in 1.0 M KOH. In addition, the material exhibited remarkable long-term durability and stability during the 40 h measurement. This investigation provides a promising strategy for rationally designing high-efficiency metal electrocatalysts with hierarchical multi-dimensional nanostructures for OER.
Collapse
Affiliation(s)
- Jiaruo Tang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Xiaoli Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Lin Tang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Yao Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Qiaoji Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Yu Huo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| |
Collapse
|
26
|
Ju J, Lu J, Shi X, Zhu H, Liang HP. Fe-Induced electronic optimization of mesoporous Co–Ni oxide nanosheets as an efficient binder-free electrode for the oxygen evolution reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj00092f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An efficient binder-free OER electrode CoNiFeOx/NF with mesoporous structure was synthesized by a facile strategy of hydrothermal method and post-annealing.
Collapse
Affiliation(s)
- Jingjing Ju
- Key laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| | - Jiajia Lu
- Key laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| | - Xiaoyue Shi
- Key laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| | - Hongwei Zhu
- Key laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| | - Han-Pu Liang
- Key laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| |
Collapse
|