1
|
Li L, Wang S, Peng J, Lai J, Zhang H, Yang J. Transition Metal Selenide-Based Anodes for Advanced Sodium-Ion Batteries: Electronic Structure Manipulation and Heterojunction Construction Aspect. Molecules 2024; 29:3083. [PMID: 38999035 PMCID: PMC11243387 DOI: 10.3390/molecules29133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, sodium-ion batteries (SIBs) have gained a foothold in specific applications related to lithium-ion batteries, thanks to continuous breakthroughs and innovations in materials by researchers. Commercial graphite anodes suffer from small interlayer spacing (0.334 nm), limited specific capacity (200 mAh g-1), and low discharge voltage (<0.1 V), making them inefficient for high-performance operation in SIBs. Hence, the current research focus is on seeking negative electrode materials that are compatible with the operation of SIBs. Many studies have been reported on the modification of transition metal selenides as anodes in SIBs, mainly targeting the issue of poor cycling life attributed to the volume expansion of the material during sodium-ion extraction and insertion processes. However, the intrinsic electronic structure of transition metal selenides also influences electron transport and sodium-ion diffusion. Therefore, modulating their electronic structure can fundamentally improve the electron affinity of transition metal selenides, thereby enhancing their rate performance in SIBs. This work provides a comprehensive review of recent strategies focusing on the modulation of electronic structures and the construction of heterogeneous structures for transition metal selenides. These strategies effectively enhance their performance metrics as electrodes in SIBs, including fast charging, stability, and first-cycle coulombic efficiency, thereby facilitating the development of high-performance SIBs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Yang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (L.L.); (S.W.); (J.P.); (J.L.); (H.Z.)
| |
Collapse
|
2
|
Aouelela M, Taha M, El-dek SI, Hassan A, Vasiliev AN, Abdel-Hafiez M. Synthesis and Characterization of Molybdenum- and Sulfur-Doped FeSe. ACS OMEGA 2023; 8:36553-36561. [PMID: 37810706 PMCID: PMC10552506 DOI: 10.1021/acsomega.3c05684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023]
Abstract
During the past decade, two-dimensional (2D) layered materials opened novel opportunities for the exploration of exciting new physics and devices owing to their physical and electronic properties. Among 2D materials, iron selenide has attracted much attention from several physicists as they provide a fruitful stage for developing new superconductors. Chemical doping offers a powerful approach to manipulate and optimize the electronic structure and physical properties of materials. Here, to reveal how doping affects the physical properties in FeSe, we report on complementary measurements of molybdenum- and sulfur-doped FeSe with theoretical calculations. Mo0.1Fe0.9Se0.9S0.1 was synthesized by a one-step solid-state reaction method. Crystal structure and morphology were studied using powder X-ray diffraction and scanning electron microscopy. Thermal stability and decomposition behavior in doped samples were studied by thermogravimetric analysis, and to understand the microscopic influence of doping, we performed Raman spectroscopy. First-principles calculations of the electronic structure illustrate distinct changes of electronic structures of the substituted FeSe systems, which can be responsible for their superconducting properties.
Collapse
Affiliation(s)
- Marwa
H.A. Aouelela
- Materials
Science and Nanotechnology Department, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Mohamed Taha
- Materials
Science and Nanotechnology Department, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Samaa I. El-dek
- Materials
Science and Nanotechnology Department, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Abdelwahab Hassan
- Department
of Physics, Faculty of Science, Fayoum University, 63514 Fayoum, Egypt
| | - Alexander N. Vasiliev
- National
University of Science and Technology MISiS, 119049 Moscow, Russia
- Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Mahmoud Abdel-Hafiez
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
- Department
of Applied Physics and Astronomy, University
of Sharjah, P. O. Box 27272 Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Ramulu B, Arbaz SJ, Nagaraju M, Yu JS. Multifunctional metal selenide-based materials synthesized via a one-pot solvothermal approach for electrochemical energy storage and conversion applications. NANOSCALE 2023; 15:13049-13061. [PMID: 37493392 DOI: 10.1039/d3nr02103c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Highly-efficient electroactive materials with distinctive electrochemical features, along with suitable strategies to prepare hetero-nanoarchitectures incorporating two or more transition metal selenides, are currently required to increase charge storage ability. Herein, a one-pot solvothermal approach is used to develop iron-nickel selenide spring-lawn-like architectures (FeNiSe SLAs) on nickel (Ni) foam. The porous Ni foam scaffold not only enables the uniform growth of FeNiSe SLAs but also serves as an Ni source. The effect of reaction time on their morphological and electrochemical properties is investigated. The FeNiSe-15 h electrode shows high areal capacity (493.2 μA h cm-2) and superior cycling constancy. The as-assembled aqueous hybrid cell (AHC) demonstrates high areal capacity and a decent rate capability of 59.4% (50 mA cm-2). The AHC exhibits good energy and power densities, along with excellent cycling stability. Furthermore, to confirm its practicability, the AHC is employed to drive portable electronic appliances by charging it with wind energy. The electrocatalytic activity of FeNiSe-based materials to complete the oxygen evolution reaction (OER) is explored. Among them, the FeNiSe-15 h catalyst shows good OER performance at a current density of 50 mA cm-2. This general synthesis approach may initiate a strategy of advanced metal selenide-based materials for multifunctional applications.
Collapse
Affiliation(s)
- Bhimanaboina Ramulu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Shaik Junied Arbaz
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Manchi Nagaraju
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Jae Su Yu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
4
|
Chen D, Zhao Z, Chen G, Li T, Chen J, Ye Z, Lu J. Metal selenides for energy storage and conversion: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214984] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Fe7Se8 nanoparticles encapsulated by CNT reinforced fibrous network with advanced sodium ion storage and hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Engineering Honeycomb-Like Carbon Nanosheets Encapsulated Iron Chalcogenides: Superior Cyclability and Rate Capability for Sodium Ion Half/Full Batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Nanthagopal M, Santhoshkumar P, Ho CW, Shaji N, Sim GS, Lee CW. Morphological Perspective on Energy Storage Behavior of Cobalt Vanadium Oxide. ChemElectroChem 2022. [DOI: 10.1002/celc.202101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Chang Won Ho
- Kyung Hee University Chemical Engineering KOREA, REPUBLIC OF
| | - Nitheesha Shaji
- Kyung Hee University Chemical Engineering KOREA, REPUBLIC OF
| | - Gyu Sang Sim
- Kyung Hee University Chemical Engineering KOREA, REPUBLIC OF
| | - Chang Woo Lee
- Kyung Hee University 1732 Deogyeong-daero, Gihung 446-701 Yongin KOREA, REPUBLIC OF
| |
Collapse
|
8
|
Zhu Z, Sun S, Tang S, Chu S, Zhang X. Easily fabricated Fe/Se soft magnetic material for catalytic phenol oxidation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Nitrogen-doped carbon nanotube-buffered FeSe2 anodes for fast-charging and high-capacity lithium storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Tian Z, Zhao Z, Wang X, Chen Y, Li D, Linghu Y, Wang Y, Wang C. A high-performance asymmetric supercapacitor-based (CuCo)Se 2/GA cathode and FeSe 2/GA anode with enhanced kinetics matching. NANOSCALE 2021; 13:6489-6498. [PMID: 33885528 DOI: 10.1039/d1nr00288k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The performance of asymmetric supercapacitors (ASCs) is limited by the poorly matched electrochemical kinetics of available electrode materials, which generally results in reduced energy density and inadequate voltage utilization. Herein, a porous conductive graphene aerogel (GA) scaffold was decorated with copper cobalt selenide ((CuCo)Se2) or iron selenide (FeSe2) to construct positive and negative electrodes, respectively. The (CuCo)Se2/GA and FeSe2/GA electrodes exhibited high specific capacitances of 672 and 940 F g-1, respectively, at 1 A g-1. The capacitance contributions from the Co3+/Co2+ and Fe3+/Fe2+ redox couple for the positive and negative electrodes were determined to elucidate the energy storage mechanism. Furthermore, the kinetics study of the two electrodes was performed, revealing b values ranging between 0.7 and 1 at various scan rates and demonstrating that the surface-controlled processes played the dominant role, leading to fast charge storage capability for both electrodes. Fabrication of an ASC device with a configuration of (CuCo)Se2/GA//FeSe2/GA resulted in a voltage of 1.6 V, a high energy density of 39 W h kg-1, and a power density of 702 W kg-1. The excellent electrochemical performances of the (CuCo)Se2/GA and FeSe2/GA electrodes demonstrate their potential applications in energy storage devices.
Collapse
Affiliation(s)
- Zhen Tian
- School of Materials Science and Engineering, North University of China, 030051 Taiyuan, PR China
| | | | | | | | | | | | | | | |
Collapse
|