1
|
Yin L, Wang X, Hu P, Xia H, Liang C, Qu W. Integrated hierarchical porous lignin-based carbon electrode for boosting membrane-free capacitive deionization areal adsorption capacity. Int J Biol Macromol 2024; 263:130065. [PMID: 38423912 DOI: 10.1016/j.ijbiomac.2024.130065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
The development of high value-added lignin-based functional porous carbon electrodes with excellent properties from sustainable industry lignin powder remains a challenge. This work aims to create robust, binder-free, conductive additives-free, and current collector-free monolithic porous carbon electrodes using industrial lignin powder for membrane-free capacitive deionization (CDI). The material exhibits high mechanical strength, hierarchical porosity structure, large uniform size, and thickness of just a few millimetres (<2.6 mm). In a three-electrode supercapacitor system, the areal specific capacitance of CLCA300-3-1.0 reaches 5.03-1.02 F cm-2 when the scan rate between 1 and 20 mV s-1 in 1 M NaCl solution. As CDI electrodes, the charge efficiency of CLCA300-3-1.0 at different voltages of 1.2 V, 1.4 V and 1.6 V is 0.53, 0.72 and 0.71, respectively. The energy consumption of CLCA280-3-1.0, CLCA300-3-1.0 and CLCA320-3-1.0 tested at 1.2 V are 3.27, 3.40 and 3.25 Wh m-3, respectively. In addition, with thickness increasing to 1.5 mm, the developed CLCA300-3-1.5 electrode exhibits an areal adsorption capacity of 0.46 mg cm-2, and relative highly capacity retention of 84.78 % after 70 cycles. The impressive desalination performance is attributed to the well-designed hierarchical porosity, superhydrophilicity and robust monolithic structure.
Collapse
Affiliation(s)
- Linghong Yin
- Laboratory of Lignin-based Materials, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xingyu Wang
- Laboratory of Lignin-based Materials, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Pengyu Hu
- Laboratory of Lignin-based Materials, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongyan Xia
- Laboratory of Lignin-based Materials, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Chen Liang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wangda Qu
- Laboratory of Lignin-based Materials, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Wang Y, Ge Y, Liu Z, Wang R, Chen Y, Qian H, Yin Z, Liu F, Zhu L, Yang W. Enhanced Selective Electrosorption of Nitrate from Wastewater by Controllably Doping Nitrogen into Porous Carbon with Micropores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6353-6362. [PMID: 38470331 DOI: 10.1021/acs.langmuir.3c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The biological NO3- removal process might be accompanied by high CO2 emissions and operation costs. Capacitive deionization (CDI) has been widely studied as a very efficient method to purify water. Here, a porous carbon material with a tunable nitrogen configuration was developed. Characterization and density functional theory calculation show that nitrogenous functional groups have a higher NO3- binding energy than Cl-, SO42-, and H2PO4-. In addition, the selectivity of NO3- is improved after the introduction of micropores by using the pore template. The NO3- ion removal and selectivity of MN-C-12 are 4.57 and 3.46-5.42 times that of activated carbon (AC), respectively. The high NO3- selectivity and electrosorption properties of MN-C-12 (the highest N content and micropore area) are due to the synergistic effect of the affinity of nitrogen functional groups to NO3- and microporous ion screening. A CDI unit for the removal of nitrogen from municipal wastewater was constructed and applied to treat wastewater meeting higher discharge standards of A (N: 15 mg L-1) and B (N: 20 mg L-1) ((GB18918-2002), China). This work provides new insights into enhanced carbon materials for the selective electrosorption of wastewater by CDI technology.
Collapse
Affiliation(s)
- Yue Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Ge
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zifan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ruoding Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yanqi Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hang Qian
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhonglong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lixin Zhu
- Nanjing Academy of Resources and Ecology Sciences, Nanjing 211500, China
| | - Weiben Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
Sufiani O, Elisadiki J, Tanaka H, Teshima K, Sahini MG, Machunda RL, Jande YAC. Adsorption-capacitive deionization hybrid system with activated carbon of modified potential of zero charge. ENVIRONMENTAL RESEARCH 2023; 219:115114. [PMID: 36574800 DOI: 10.1016/j.envres.2022.115114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In this study water solutions are desalinated with carbon electrodes of modified surface charges. The idea is to endow the electrodes with the ability to physically adsorb salt ions without applying potential so as to save energy. The modification enhanced to decrease the energy consumption of a newly invented adsorption-CDI hybrid system by 19%, since modified activated carbon cell consumed 0.620 (relative error 3.00%) kWh/m3 compared to pristine activated carbon cell which consumed 0.746 (relative error 1.20%) kWh/m3. Further analysis revealed high adsorption capacity of the modified activated carbon electrode cell which exhibited 9.0 (relative error 2.22%) compared to activated carbon cell with 5.3 (relative error 5.66%) mg g-1. These results show the potential of surface modification in adding value to low cost activated carbons for application in CDI.
Collapse
Affiliation(s)
- Omari Sufiani
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Joyce Elisadiki
- Physics Department, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Hideki Tanaka
- Research Initiative for Supra-Materials, Shinshu University 4-17-1, Wakasato, Nagano, 380-8553, Japan
| | - Katsuya Teshima
- Research Initiative for Supra-Materials, Shinshu University 4-17-1, Wakasato, Nagano, 380-8553, Japan
| | - Mtabazi G Sahini
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Revocatus L Machunda
- Department of Water and Environmental Sciences and Engineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Yusufu A C Jande
- Water Infrastructure and Sustainable Energy Futures (WISE-Futures) African Centre of Excellence, The Nelson Mandela African Institution of Science and Technology, Nelson Mandela Road, Tengeru, P.O. Box 9124, Nelson Mandela, Arusha, Tanzania.
| |
Collapse
|
4
|
Sufiani O, Sahini MG, Elisadiki J. Towards attaining SDG 6: The opportunities available for capacitive deionization technology to provide clean water to the African population. ENVIRONMENTAL RESEARCH 2023; 216:114671. [PMID: 36341793 DOI: 10.1016/j.envres.2022.114671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The unavailability of clean water caused by population growth, increased industrial activities, and global climate change is a major challenge in many communities. A number of desalination technologies including distillation, reverse osmosis and electrodialysis, have been used to supplement the available water resources. However, these technologies are energy intensive and demand a significant financial commitment. Capacitive deionization (CDI) is an emerging desalination technology which is promising to provide water at a reasonable cost, especially in societies with limited incomes such as those in Africa. The opportunities for CDI to provide clean water to the African population are discussed in this paper. These opportunities include electrosorption at low potential, low energy consumption, large quantities of agricultural wastes for the production of electrode materials, high sunshine irradiation throughout the year, suitability for disinfection and defluoridation and its applications in the removal of heavy metals and emerging pollutants. Due to the existence of numerous enabling conditions, the analysis from this paper demonstrates that CDI can be a dependable method to provide clean water in Africa.
Collapse
Affiliation(s)
- Omari Sufiani
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania.
| | - Mtabazi G Sahini
- Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Joyce Elisadiki
- Department of Physics, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| |
Collapse
|
5
|
Zhang M, Ma M, Miao Z, Chai W, Cao Y. Coal-based activated carbon functionalized with anionic and cationic surfactants for asymmetric capacitive deionization of nitrate. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Activated Carbon Aerogel as an Electrode with High Specific Capacitance for Capacitive Deionization. Processes (Basel) 2022. [DOI: 10.3390/pr10112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In this study, carbon aerogels (CAs) were synthesized by the sol-gel method, using environmentally friendly glucose as a precursor, and then they were further activated with potassium hydroxide (KOH) to obtain activated carbon aerogels (ACAs). After the activation, the electrochemical performance of the ACAs was significantly improved, and the specific capacitance increased from 19.70 F·g−1 to 111.89 F·g−1. Moreover, the ACAs showed a stronger hydrophilicity with the contact angle of 118.54° compared with CAs (69.31°). When used as an electrode for capacitive deionization (CDI), the ACAs had not only a better diffuse electric double layer behavior, but also a lower charge transfer resistance and intrinsic resistance. Thus, the ACA electrode had a faster CDI desalination rate and a higher desalination capacity. The unit adsorption capacity is three times larger than that of the CA electrode. In the desalination experiment of 100 mg·L−1 sodium chloride (NaCl) solution using a CDI device based on the ACA electrode, the optimal electrode spacing was 2 mm, the voltage was 1.4 V, and the flow rate was 30 mL·min−1. When the NaCl concentration was 500 mg·L−1, the unit adsorption capacity of the ACA electrode reached 26.12 mg·g−1, much higher than that which has been reported in many literatures. The desalination process followed the Langmuir model, and the electro-sorption of the NaCl was a single layer adsorption process. In addition, the ACA electrode exhibited a good regeneration performance and cycle stability.
Collapse
|
7
|
Theory of bipolar connections in capacitive deionization and principles of structural design. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Zhang X, Toledo-Carrillo EA, Yu D, Dutta J. Effect of Surface Charge on the Fabrication of Hierarchical Mn-Based Prussian Blue Analogue for Capacitive Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40371-40381. [PMID: 36006982 PMCID: PMC9460436 DOI: 10.1021/acsami.2c08192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Multiple and hierarchical manganese (Mn)-based Prussian blue analogues obtained on different substrates are successfully prepared using a universal, facile, and simple strategy. Different functional groups and surface charge distributions on carbon cloth have significant effects on the morphologies and nanostructures of Mn-based Prussian blue analogues, thereby indirectly affecting their physicochemical properties. Combined with the advantages of the modified carbon cloth and the nanostructured Mn-based Prussian blue analogues, the composite with negative surface charge formed by the electronegativity differences shows good electrochemical properties, leading to improvement in charge efficiency during capacitive desalination. An asymmetric device fabricated with Mn-based Prussian blue analogue-modified F-doped carbon cloth as the cathode and acid-treated carbon cloth as the anode presents the highest salt adsorption capacity of 10.92 mg g-1 with a charge efficiency of 82.28% and the lowest energy consumption of 0.45 kW h m-3 at 1 V due to the main influencing factor from the negative surface charge leading to co-ion expulsion boosting the capacitive deionization performance. We provide insights for further exploration of the relationship between second-phase materials and carbon cloth, while offering some guidance for the design and preparation of electrodes for desalination and beyond.
Collapse
|
9
|
Das B, Toledo-Carrillo EA, Li L, Ye F, Chen J, Slabon A, Verho O, Eriksson L, Göthelid M, Dutta J, Äkermark B. Cobalt Electrocatalyst on Fluorine Doped Carbon Cloth – a Robust and Partially Regenerable Anode for Water Oxidation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biswanath Das
- Stockholm University: Stockholms Universitet Organic Chemistry Stockholm SWEDEN
| | | | - Lin Li
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Physical Science and Technology CHINA
| | - Fei Ye
- KTH: Kungliga Tekniska Hogskolan Materials and nanophysics SWEDEN
| | - Jianhong Chen
- Stockholm University: Stockholms Universitet MMK SWEDEN
| | - Adam Slabon
- University of Wuppertal: Bergische Universitat Wuppertal Inorganic Chemistry GERMANY
| | - Oscar Verho
- Uppsala Universitet Biomedicinskt Centrum BMC SWEDEN
| | | | - Mats Göthelid
- KTH: Kungliga Tekniska Hogskolan Materials and nanophysics SWEDEN
| | - Joydeep Dutta
- KTH: Kungliga Tekniska Hogskolan Materials and nanophysics SWEDEN
| | - Björn Äkermark
- Stockholms Universitet Organic Chemistry Svante Arrhenius väg 16C, 11418 Stockholm SWEDEN
| |
Collapse
|
10
|
Electrochemical investigation of carbon paper/ZnO nanocomposite electrodes for capacitive anion capturing. Sci Rep 2022; 12:11843. [PMID: 35821513 PMCID: PMC9276741 DOI: 10.1038/s41598-022-15771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
In this work, we demonstrate an effective anion capturing in an aqueous medium using a highly porous carbon paper decorated with ZnO nanorods. A sol-gel technique was first employed to form a thin and compact seed layer of ZnO nanoparticles on the dense network of carbon fibers in the carbon paper. Subsequently, ZnO nanorods were successfully grown on the pre-seeded carbon papers using inexpensive chemical bath deposition. The prepared porous electrodes were electrochemically investigated for improved charge storage and stability under long-term operational conditions. The results show effective capacitive deionization with a maximum areal capacitance of 2 mF/cm2, an energy consumption of 50 kJ per mole of chlorine ions, and an excellent long-term stability of the fabricated C-ZnO electrodes. The experimental results are supported by COMSOL simulations. Besides the demonstrated capacitive desalination application, our results can directly be used to realize suitable electrodes for energy storage in supercapacitors.
Collapse
|
11
|
Nordstrand J, Toledo-Carrillo E, Kloo L, Dutta J. Sodium to cesium ions: a general ladder mechanism of ion diffusion in prussian blue analogs. Phys Chem Chem Phys 2022; 24:12374-12382. [PMID: 35551313 DOI: 10.1039/d2cp01156e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prussian blue analogs (PBAs) form crystals with large lattice voids that are suitable for the capture, transport and storage of various interstitial ions. Recently, we introduced the concept of a ladder mechanism to describe how sodium ions inside a PBA crystal structure diffuse by climbing the frames formed by aligned cyanide groups in the host structure. The current work uses semi-empirical tight-binding density functional theory (DFTB) in a multiscale approach to investigate how differences in the size of the monovalent cation affect the qualitative and quantitative aspects of the diffusion process. The results show that the ladder mechanism represents a unified framework, from which both similarities and differences between cation types can be understood. Fundamental Coulombic interactions make all positive cations avoid the open vacant areas in the structure, while cavities surrounded by partially negatively charged cyanide groups form diffusion bottlenecks and traps for larger cations. These results provide a new and quantitative way of understanding the suppression of cesium adsorption that has previously been reported for PBAs characterized by a low vacancy density. In conclusion, this work provides a unified picture of the cation adsorption in PBAs based on the newly formulated ladder mechanism.
Collapse
Affiliation(s)
- Johan Nordstrand
- Functional Materials, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova universitetscentrum, SE-106 91, Stockholm, Sweden.
| | - Esteban Toledo-Carrillo
- Functional Materials, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova universitetscentrum, SE-106 91, Stockholm, Sweden.
| | - Lars Kloo
- Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Joydeep Dutta
- Functional Materials, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova universitetscentrum, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
12
|
Jiang H, Zhang J, Luo K, Xing W, Du J, Dong Y, Li X, Tang W. Effective fluoride removal from brackish groundwaters by flow-electrode capacitive deionization (FCDI) under a continuous-flow mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150166. [PMID: 34517327 DOI: 10.1016/j.scitotenv.2021.150166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Herein, we demonstrated the suitability and effectiveness of utilizing flow-electrode capacitive deionization (FCDI) for treatment of fluoride-contaminated brackish groundwater. By comparing operational modes of short-circuited closed-cycle (SCC), isolated closed-cycle (ICC) and single cycle (SC), it was found that SCC mode was the most advantageous. In SCC configuration, the effects of different parameters on the removal of F- and Cl- were investigated including current density, hydraulic residence time (HRT), activated carbon (AC) loading and feed concentration of coexisting NaCl. Results indicated that the steady-state effluent Cl- concentration dropped with elevated applied current, and the decreasing rate got faster with the increase of HRT or AC loading. However, for the steady-state effluent F- concentration, it dropped to a value under a small applied current and maintained stable in spite of the increase in applied current, and both HRT and AC loading had insignificant effects on the steady-state effluent F- concentration. F- was preferentially removed from the treated water compared with Cl-, and a higher ion selectivity could be obtained at lower applied current and smaller HRT with the trade-off being that operation under these circumstances would generate outlet water with little change in conductivity compared to the influent. The removal efficiencies of F- and Cl- both decreased with increasing feed concentration of coexisting NaCl. This study should be of value in establishing FCDI as a viable technology for treatment of fluoride-contaminated brackish groundwater.
Collapse
Affiliation(s)
- Huan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jing Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Kunyue Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jiaxin Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yi Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xiaoting Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
13
|
Nordstrand J, Toledo-Carrillo E, Vafakhah S, Guo L, Yang HY, Kloo L, Dutta J. Ladder Mechanisms of Ion Transport in Prussian Blue Analogues. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1102-1113. [PMID: 34936348 PMCID: PMC8762639 DOI: 10.1021/acsami.1c20910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Prussian blue (PB) and its analogues (PBAs) are drawing attention as promising materials for sodium-ion batteries and other applications, such as desalination of water. Because of the possibilities to explore many analogous materials with engineered, defect-rich environments, computational optimization of ion-transport mechanisms that are key to the device performance could facilitate real-world applications. In this work, we have applied a multiscale approach involving quantum chemistry, self-consistent mean-field theory, and finite-element modeling to investigate ion transport in PBAs. We identify a cyanide-mediated ladder mechanism as the primary process of ion transport. Defects are found to be impermissible to diffusion, and a random distribution model accurately predicts the impact of defect concentrations. Notably, the inclusion of intermediary local minima in the models is key for predicting a realistic diffusion constant. Furthermore, the intermediary landscape is found to be an essential difference between both the intercalating species and the type of cation doping in PBAs. We also show that the ladder mechanism, when employed in multiscale computations, properly predicts the macroscopic charging performance based on atomistic results. In conclusion, the findings in this work may suggest the guiding principles for the design of new and effective PBAs for different applications.
Collapse
Affiliation(s)
- Johan Nordstrand
- Functional
Materials, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova Universitetscentrum, 106 91 Stockholm, Sweden
| | - Esteban Toledo-Carrillo
- Functional
Materials, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova Universitetscentrum, 106 91 Stockholm, Sweden
| | - Sareh Vafakhah
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, Singapore 487372
| | - Lu Guo
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, Singapore 487372
| | - Hui Ying Yang
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, Singapore 487372
| | - Lars Kloo
- Applied
Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Joydeep Dutta
- Functional
Materials, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova Universitetscentrum, 106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Nordstrand J, Kloo L. Electrostatic interactions and physisorption: mechanisms of passive cesium adsorption on Prussian blue. Phys Chem Chem Phys 2022; 24:25452-25461. [DOI: 10.1039/d2cp04317c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The study finds atomic-level physisorption interactions that leads to electrostatic Langmuir adsorption.
Collapse
Affiliation(s)
- Johan Nordstrand
- Functional Materials, Applied Physics Department, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova universitetscentrum, SE-106 91 Stockholm, Sweden
| | - Lars Kloo
- Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
15
|
Nordstrand J, Dutta J. A new automated model brings stability to finite‐element simulations of capacitive deionization. NANO SELECT 2021. [DOI: 10.1002/nano.202100270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Johan Nordstrand
- Functional Materials, Applied Physics Department, School of Engineering Sciences KTH Royal Institute of Technology AlbaNova universitetscentrum Stockholm 106 91 Sweden
| | - Joydeep Dutta
- Functional Materials, Applied Physics Department, School of Engineering Sciences KTH Royal Institute of Technology AlbaNova universitetscentrum Stockholm 106 91 Sweden
- Center of Nanotechnology King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|