1
|
Martínez-Jódar A, Villar-Rodil S, Munuera JM, Castro-Muñiz A, Coleman JN, Raymundo-Piñero E, Paredes JI. Two-Dimensional MoS 2 Nanosheets Derived from Cathodic Exfoliation for Lithium Storage Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:932. [PMID: 38869557 PMCID: PMC11173767 DOI: 10.3390/nano14110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
The preparation of 2H-phase MoS2 thin nanosheets by electrochemical delamination remains a challenge, despite numerous efforts in this direction. In this work, by choosing appropriate intercalating cations for cathodic delamination, the insertion process was facilitated, leading to a higher degree of exfoliation while maintaining the original 2H-phase of the starting bulk MoS2 material. Specifically, trimethylalkylammonium cations were tested as electrolytes, outperforming their bulkier tetraalkylammonium counterparts, which have been the focus of past studies. The performance of novel electrochemically derived 2H-phase MoS2 nanosheets as electrode material for electrochemical energy storage in lithium-ion batteries was investigated. The lower thickness and thus higher flexibility of cathodically exfoliated MoS2 promoted better electrochemical performance compared to liquid-phase and ultrasonically assisted exfoliated MoS2, both in terms of capacity (447 vs. 371 mA·h·g-1 at 0.2 A·g-1) and rate capability (30% vs. 8% capacity retained when the current density was increased from 0.2 A·g-1 to 5 A·g-1), as well as cycle life (44% vs. 17% capacity retention at 0.2 A·g-1 after 580 cycles). Overall, the present work provides a convenient route for obtaining MoS2 thin nanosheets for their advantageous use as anode material for lithium storage.
Collapse
Affiliation(s)
- Alberto Martínez-Jódar
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
- CEMHTI UPR3079, University of Orléans, CNRS, 1D avenue de la Recherche Scientifique, 45071 Orléans, France;
| | - Silvia Villar-Rodil
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
| | - José M. Munuera
- Department of Physics, Faculty of Sciences, University of Oviedo, C/ Leopoldo Calvo Sotelo, 18, 33007 Oviedo, Spain;
- School of Physics, CRANN and AMBER Research Centre, Trinity College Dublin, D02 E8C0 Dublin, Ireland;
| | - Alberto Castro-Muñiz
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
| | - Jonathan N. Coleman
- School of Physics, CRANN and AMBER Research Centre, Trinity College Dublin, D02 E8C0 Dublin, Ireland;
| | | | - Juan I. Paredes
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
| |
Collapse
|
2
|
Tang Z, Zhou S, Huang Y, Wang H, Zhang R, Wang Q, Sun D, Tang Y, Wang H. Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Zhao S, Zheng Y, Wang J, Han G, He J, Chen Y, Xu C, Frauenheim T, Li M. Enabling deep conversion reactions by weakening molybdenum-oxygen bonds through K+ pre-intercalation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Rao Y, Zhu K, Li H, Liang P, Zheng H, Chen J, Zhang J, Liu J, Yan K, Wang J. One-step Synthesis of Graphene-wrapped ZnS-MoS2@Carbon Composites as an Ultrastable Lithium Storage Anode Material. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Hu J, Guan C, Li H, Xie Y, Zhang L, Zheng J, Lai Y, Zhang Z. Boosting potassium-storage performance via confining highly dispersed molybdenum dioxide nanoparticles within N-doped porous carbon nano-octahedrons. J Colloid Interface Sci 2021; 607:1109-1119. [PMID: 34571298 DOI: 10.1016/j.jcis.2021.09.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
The development of durable and stable metal oxide anodes for potassium ion batteries (PIBs) has been hampered by poor electrochemical performance and ambiguous reaction mechanisms. Herein, we design and fabricate molybdenum dioxide (MoO2)@N-doped porous carbon (NPC) nano-octahedrons through metal-organic frameworks derived strategy for PIBs with MoO2 nanoparticles confined within NPC nano-octahedrons. Benefiting from the synergistic effect of nanoparticle level of MoO2 and N-doped carbon porous nano-octahedrons, the MoO2@NPC electrode exhibits superior electron/ion transport kinetics, excellent structural integrity, and impressive potassium-ion storage performance with enhanced cyclic stability and high-rate capability. The density functional theory calculations and experiment test proved that MoO2@NPC has a higher affinity of potassium and higher conductivity than MoO2 and N-doped carbon electrodes. Kinetics analysis revealed that surface pseudocapacitive contributions are greatly enhanced for MoO2@NPC nano-octahedrons. In-situ and ex-situ analysis confirmed an intercalation reaction mechanism of MoO2@NPC for potassium ion storage. Furthermore, the assembled MoO2@NPC//perylenetetracarboxylic dianhydride (PTCDA) full cell exhibits good cycling stability with 72.6 mAh g-1 retained at 100 mA g-1 over 200 cycles. Therefore, this work present here not only evidences an effective and viable structural engineering strategy for enhancing the electrochemical behavior of MoO2 material in PIBs, but also gives a comprehensive insight of kinetic and mechanism for potassium ion interaction with metal oxide.
Collapse
Affiliation(s)
- Junxian Hu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chaohong Guan
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Huangxu Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, PR China
| | - Yangyang Xie
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Liuyun Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jingqiang Zheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yanqing Lai
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhian Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|