1
|
Xue Y, Li K, Shen Y, Miao S, Sang D, Chen W. Elucidating the enhanced charge storage mechanism in mechanically pretreated banana peel biochar: Endogenization of exogenous dopants onto lignocellulose for elevated O/N active sites. Int J Biol Macromol 2025; 312:143910. [PMID: 40350132 DOI: 10.1016/j.ijbiomac.2025.143910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/27/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
In this study, an innovative endogenization technique for the endogenization of exogenous dopants in lignocellulose from banana biomass, namely mechanical ball milling (MBM) pretreatment, is employed for the efficient synthesis of highly dispersed nitrogen/oxygen-doped biochar electrodes. The endogenization effect of MBM on exogenous melamine/KHCO3 dopants (EMKDs) and its enhanced mechanism for storage performance are thoroughly investigated. Results show the MBM-pretreated biochar exhibits superior pseudocapacitive activity, energy density (26.26 Wh·kg-1) and lifespan stability of 10,000 cycles, far surpassing those pretreated by impregnation and stirring methods. The excellent properties are attributed to the MBM-induced uniformly dispersed active centers, greatly promoting the formation of honeycomb-like structure, graphitization, pyrrolic-N (55.02 %) and C=O (52.20 %). FTIR and XPS results confirm the high energy MBM process facilitates the cleavage of ether oxygen bonds, thereby enabling EMKDs to graft uniformly onto lignocellulose structure, and inducing more generation of highly dispersed specific N/O functional groups by further promotion of KHCO3-induced mediated sp2-C and π-π* at high temperature. Furthermore, both experimental and theoretical investigations confirm that pyrrolic-N and C=O as key pseudocapacitance active sites, with their synergistic effect significantly enhancing the redox reactivity, conductivity and pseudocapacitance. The findings offer an effective endogenization pretreatment strategy for high performance biochar electrode.
Collapse
Affiliation(s)
- Yan Xue
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Kunquan Li
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China.
| | - Yifeng Shen
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Shengsheng Miao
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Dazhi Sang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Wei Chen
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| |
Collapse
|
2
|
Wang H, Meng H, Olowoyo JO, Zeng Y, Zheng Y. Advancements in Lignin Valorization for Energy Storage Applications: Sustainable Technologies for Lignin Extraction and Hydrothermal Carbonization. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:309. [PMID: 39997874 PMCID: PMC11858615 DOI: 10.3390/nano15040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
The conversion of industrial waste lignin into sustainable carbon materials is an essential step towards reducing dependency on fossil fuels and mitigating environmental impacts. This review explores various aspects of lignin utilization, with particular focus on the extraction of lignin and the application of lignin-derived carbon materials in energy storge applications. The review explores advanced chemical methods to improve the efficiency of biomass conversion, detailing emerging technologies for lignin extraction from various biomasses using innovative solvents and techniques, such as Ionic Liquids and Deep Eutectic Solvents (DESs). Additionally, it discusses the parameters that impact the hydrothermal carbonization (HTC) process. The produced hydrochar shows potential for use as optimized precursors for energy storage applications. This review also considers the implications of these technologies for environmental sustainability and the circular economy, suggesting future research directions to enhance and scale these processes for global impact. This comprehensive analysis highlights the critical role of advanced biomass conversion technologies in achieving sustainability and outlines pathways for future lignin-based carbon materials innovations.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada; (H.W.); (H.M.); (J.O.O.)
| | - Haozheng Meng
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada; (H.W.); (H.M.); (J.O.O.)
| | - Joshua O. Olowoyo
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada; (H.W.); (H.M.); (J.O.O.)
| | - Yimin Zeng
- CanmetMATERIALS, NRCan, Hamilton, ON L8P 0A5, Canada
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada; (H.W.); (H.M.); (J.O.O.)
| |
Collapse
|
3
|
Du X, Lin Z, Zhang Y, Li P. Microstructural tailoring of porous few-layer graphene-like biochar from kitchen waste hydrolysis residue in molten carbonate medium: Structural evolution and conductive additive-free supercapacitor application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162045. [PMID: 36754327 DOI: 10.1016/j.scitotenv.2023.162045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Biomass-derived graphene-like material is a promising candidate for supercapacitor electrodes, while it is critical to controllably convert biomass into structure-tunable graphene. Herein, few-layer graphene-like biochar (FLGBS) was successfully fabricated from waste biomass in molten carbonate medium. Molten carbonate acted as the effective catalyst for graphitizing and the liquid medium for microcrystal relinking to achieve the rearrangement of carbon structure. It was found that the stacking of graphene layer and formation of porous structure were influenced by the volume of reaction medium and biomass pre‑carbonation. Namely, increasing the dosage of molten K2CO3 was in favor to form few layer-type graphene structure, but excess dosage could destroy the nanopore structure to expand the aperture. In addition, pre‑carbonation at high temperature impeded the exfoliation of graphene layers. When FLGBSs were applied to fabricate conductive additive-free electrode, they displayed a superior supercapacitor performance (up to 237.4 F g-1 at 0.5 Ag-1). This excellent performance should be attributed to the large specific surface area, hierarchical pore structure and graphene-like structure. In short, this work could help to get insights into the structural evolution of biomass carbon to graphene-like biochar in molten carbonate medium and achieve the tailoring of microstructure for further application in energy storage.
Collapse
Affiliation(s)
- Xinhang Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zhiwen Lin
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
4
|
Composite micelle induced biomass self-assembly into N, S co-doped hierarchical porous carbon spheres with tunable properties for energy storage. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
You Y, Hua X, Cui Y, Wu G, Qiu S, Xia Y, Luo Y, Xu F, Sun L, Chu H. Momordica Grosvenori Shell-Derived Porous Carbon Materials for High-Efficiency Symmetric Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4204. [PMID: 36500827 PMCID: PMC9738515 DOI: 10.3390/nano12234204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Porous carbon materials derived from waste biomass have received broad interest in supercapacitor research due to their high specific surface area, good electrical conductivity, and excellent electrochemical performance. In this work, Momordica grosvenori shell-derived porous carbons (MGCs) were synthesized by high-temperature carbonization and subsequent activation by potassium hydroxide (KOH). As a supercapacitor electrode, the optimized MGCs-2 sample exhibits superior electrochemical performance. For example, a high specific capacitance of 367 F∙g-1 is achieved at 0.5 A∙g-1. Even at 20 A∙g-1, more than 260 F∙g-1 can be retained. Moreover, it also reveals favorable cycling stability (more than 96% of capacitance retention after 10,000 cycles at 5 A∙g-1). These results demonstrate that porous carbon materials derived from Momordica grosvenori shells are one of the most promising electrode candidate materials for practical use in the fields of electrochemical energy storage and conversion.
Collapse
|
6
|
He C, Huang M, Zhao L, Lei Y, He J, Tian D, Zeng Y, Shen F, Zou J. Enhanced electrochemical performance of porous carbon from wheat straw as remolded by hydrothermal processing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156905. [PMID: 35753495 DOI: 10.1016/j.scitotenv.2022.156905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
To improve the electrochemical properties of lignocellulose-derived carbon, wheat straw was hydrothermally processed at different temperatures followed by KOH activation for the preparation of porous carbons. Their physical, chemical, and electrochemical properties were analyzed to clarify the effects of hydrothermal processing. The results indicated that high-temperature hydrothermal processing fragmented the wheat straw and increased the heteroatoms content to make the hydrochars more conducive to activation, thereby improving the specific surface area, N-heteroatoms and phenolic hydroxyl groups of activated carbons. A maximum specific surface area of 2034.4 m2 g-1 was achieved by HAC-300 (the activated carbon derived from hydrothermally processed wheat straw at 300 °C) with more N-heteroatoms and phenolic hydroxyl groups. Correspondingly, the excellent electrochemical performance of the three-electrode supercapacitor device assembled by HAC-300 showed a specific capacitance of 286.95 F g-1 at 0.5 A g-1, representing an improvement of 89.5 % over than that of the original wheat straw without hydrothermally processing. Its symmetric supercapacitor also realized a good capacitance retention of 95.8 % after 10,000 cycles at 5 A g-1, suggesting the excellent cycling stability of the porous carbon from the hydrothermally processed wheat straw.
Collapse
Affiliation(s)
- Chenjun He
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mei Huang
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Li Zhao
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongjia Lei
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinsong He
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jianmei Zou
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
7
|
Liu L, Lu Y, Wang S, Ding Y, Chen Y, Qiu D, Wang D, Niu J, Zhang J, Chen X, Song H. B, N stabilization effect on multicavity carbon microspheres for boosting durable and fast potassium-ion storage. J Colloid Interface Sci 2022; 620:24-34. [DOI: 10.1016/j.jcis.2022.03.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
|
8
|
Yue X, Yang H, An P, Gao Z, Li H, Ye F. Multi-element co-doped biomass porous carbon with uniform cellular pores as a supercapacitor electrode material to realise high value-added utilisation of agricultural waste. Dalton Trans 2022; 51:12125-12136. [PMID: 35876119 DOI: 10.1039/d2dt01750d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomass-based porous carbon materials have attracted considerable attention because of their simple, low-cost, green, and pollution-free preparation process. Owing to their unique tubular structure and subsequent activation process, they often have a well-developed pore structure. Biomass-based carbon materials with three-dimensional hierarchical pores and polyatomic doping are regarded as promising electrode materials in the field of energy storage. In this study, cornstalk was used as the biomass and a pioneering approach was used to prepare porous carbon co-doped with N, B, and P. The B,N,P-codoped porous carbon has a three-dimensional honeycomb-like network structure with uniformly distributed and interwoven macro-, meso-, and micropores. Furthermore, it has an ultra-high specific surface area of 3123.5 m2 g-1, a high specific capacitance of 342.5 F g-1 at a current density of 0.5 A g-1, and an energy density of up to 26.18 W h kg-1. This study demonstrates a multi-element co-doping strategy that enhances the performance of cornstalk as a precursor of a supercapacitor electrode material and has important implications in the high-value-added utilisation of waste straw.
Collapse
Affiliation(s)
- Xiandong Yue
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Haixia Yang
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Ping An
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Zexing Gao
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Haokun Li
- School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Feng Ye
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
9
|
Construction of advanced zeolitic imidazolate framework derived cobalt sulfide/MXene composites as high-performance electrodes for supercapacitors. J Colloid Interface Sci 2022; 615:282-292. [DOI: 10.1016/j.jcis.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
|
10
|
Kong S, Xiang X, Jin B, Guo X, Wang H, Zhang G, Huang H, Cheng K. B, O and N Codoped Biomass-Derived Hierarchical Porous Carbon for High-Performance Electrochemical Energy Storage. NANOMATERIALS 2022; 12:nano12101720. [PMID: 35630945 PMCID: PMC9143239 DOI: 10.3390/nano12101720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
High specific surface area, reasonable pore structure and heteroatom doping are beneficial to enhance charge storage, which all depend on the selection of precursors, activators and reasonable preparation methods. Here, B, O and N codoped biomass-derived hierarchical porous carbon was synthesized by using KCl/ZnCl2 as a combined activator and porogen and H3BO3 as both boron source and porogen. Moreover, the cheap, environmentally friendly and heteroatom-rich laver was used as a precursor, and impregnation and freeze-drying methods were used to make the biological cells of laver have sufficient contact with the activator so that the layer was deeply activated. The as-prepared carbon materials exhibit high surface area (1514.3 m2 g−1), three-dimensional (3D) interconnected hierarchical porous structure and abundant heteroatom doping. The synergistic effects of these properties promote the obtained carbon materials with excellent specific capacitance (382.5 F g−1 at 1 A g−1). The symmetric supercapacitor exhibits a maximum energy density of 29.2 W h kg−1 at a power density of 250 W kg−1 in 1 M Na2SO4, and the maximum energy density can reach to 51.3 W h kg−1 at a power density of 250 W kg−1 in 1 M BMIMBF4/AN. Moreover, the as-prepared carbon materials as anode for lithium-ion batteries possess high reversible capacity of 1497 mA h g−1 at 1 A g−1 and outstanding cycling stability (no decay after 2000 cycles).
Collapse
Affiliation(s)
- Shuying Kong
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 404100, China; (X.X.); (B.J.); (X.G.); (H.W.); (G.Z.); (H.H.)
- Correspondence: (S.K.); (K.C.)
| | - Xinzhu Xiang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 404100, China; (X.X.); (B.J.); (X.G.); (H.W.); (G.Z.); (H.H.)
| | - Binbin Jin
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 404100, China; (X.X.); (B.J.); (X.G.); (H.W.); (G.Z.); (H.H.)
| | - Xiaogang Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 404100, China; (X.X.); (B.J.); (X.G.); (H.W.); (G.Z.); (H.H.)
| | - Huijun Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 404100, China; (X.X.); (B.J.); (X.G.); (H.W.); (G.Z.); (H.H.)
| | - Guoqing Zhang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 404100, China; (X.X.); (B.J.); (X.G.); (H.W.); (G.Z.); (H.H.)
| | - Huisheng Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 404100, China; (X.X.); (B.J.); (X.G.); (H.W.); (G.Z.); (H.H.)
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (S.K.); (K.C.)
| |
Collapse
|
11
|
Ndlwana L, Raleie N, Dimpe KM, Ogutu HF, Oseghe EO, Motsa MM, Msagati TA, Mamba BB. Sustainable Hydrothermal and Solvothermal Synthesis of Advanced Carbon Materials in Multidimensional Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5094. [PMID: 34501183 PMCID: PMC8434334 DOI: 10.3390/ma14175094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
The adoption of green technology is very important to protect the environment and thus there is a need for improving the existing methods for the fabrication of carbon materials. As such, this work proposes to discuss, interrogate, and propose viable hydrothermal, solvothermal, and other advanced carbon materials synthesis methods. The synthesis approaches for advanced carbon materials to be interrogated will include the synthesis of carbon dots, carbon nanotubes, nitrogen/titania-doped carbons, graphene quantum dots, and their nanocomposites with solid/polymeric/metal oxide supports. This will be performed with a particular focus on microwave-assisted solvothermal and hydrothermal synthesis due to their favourable properties such as rapidity, low cost, and being green/environmentally friendly. These methods are regarded as important for the current and future synthesis and modification of advanced carbon materials for application in energy, gas separation, sensing, and water treatment. Simultaneously, the work will take cognisance of methods reducing the fabrication costs and environmental impact while enhancing the properties as a direct result of the synthesis methods. As a direct result, the expectation is to impart a significant contribution to the scientific body of work regarding the improvement of the said fabrication methods.
Collapse
Affiliation(s)
- Lwazi Ndlwana
- Florida Science Campus Florida, Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (N.R.); (H.F.O.); (E.O.O.); (M.M.M.); (T.A.M.M.); (B.B.M.)
| | - Naledi Raleie
- Florida Science Campus Florida, Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (N.R.); (H.F.O.); (E.O.O.); (M.M.M.); (T.A.M.M.); (B.B.M.)
| | - Kgogobi M. Dimpe
- Doornfontein Campus, Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Hezron F. Ogutu
- Florida Science Campus Florida, Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (N.R.); (H.F.O.); (E.O.O.); (M.M.M.); (T.A.M.M.); (B.B.M.)
| | - Ekemena O. Oseghe
- Florida Science Campus Florida, Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (N.R.); (H.F.O.); (E.O.O.); (M.M.M.); (T.A.M.M.); (B.B.M.)
| | - Mxolisi M. Motsa
- Florida Science Campus Florida, Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (N.R.); (H.F.O.); (E.O.O.); (M.M.M.); (T.A.M.M.); (B.B.M.)
| | - Titus A.M. Msagati
- Florida Science Campus Florida, Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (N.R.); (H.F.O.); (E.O.O.); (M.M.M.); (T.A.M.M.); (B.B.M.)
| | - Bhekie B. Mamba
- Florida Science Campus Florida, Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (N.R.); (H.F.O.); (E.O.O.); (M.M.M.); (T.A.M.M.); (B.B.M.)
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
12
|
Zhao Z, Xiao Z, Xi Y, Wang G, Zhang Y, Li J, Wei L. B,N-Codoped Porous C with Controllable N Species as an Electrode Material for Supercapacitors. Inorg Chem 2021; 60:13252-13261. [PMID: 34352170 DOI: 10.1021/acs.inorgchem.1c01617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Manufacturing heteroatom-doped porous C with controllable N species is an important issue for supercapacitors. Herein, we report a low-cost and simplified strategy for synthesizing B,N-codoped porous C (BNPC) by a freeze-drying chitosan-boric acid aerogel beads and subsequent carbonization treatment. The BNPC samples were studied using various characterization technologies. The introduction of boric acid to chitosan successfully induced the formation of B,N-codoped C with a well-developed 3D interconnected porous structure. The B doping had a significant impact on the distribution of N species in the samples. Moreover, the good wettability of the sample resulting from B doping is favorable for electrolyte diffusion and ion transport. As a consequence, the optimal BNPC sample showed an excellent specific capacitance of 240 F g-1 at 0.5 A g-1 and an outstanding capacitance retention of 95.1% after 10000 cycles at 5 A g-1. An assembled symmetrical supercapacitor displayed an energy density of 11.4 Wh kg-1 at a power density of 250 W kg-1. The proposed work provides a simple and effective method to obtain B,N-codoped C-based materials with high electrochemical performance.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoyi Xiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yaru Xi
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guoxiang Wang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Youchen Zhang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiajun Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Li Wei
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
13
|
Devi N, Sahoo S, Kumar R, Singh RK. A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications. NANOSCALE 2021; 13:11679-11711. [PMID: 34190274 DOI: 10.1039/d1nr01134k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, nanomaterials are considered to be the backbone of modern civilization. Especially in the energy sector, nanomaterials (mainly, carbon- and metal oxide/hydroxide-based nanomaterials) have contributed significantly. Among the various green approaches for the synthesis of these nanomaterials, the microwave-assisted approach has attracted significant research interest worldwide. In this context, it is noteworthy to mention that because of their enhanced surface area, high conducting nature, and excellent electrical and electrochemical properties, carbon nanomaterials are being extensively utilized as efficient electrode materials for both supercapacitors and secondary batteries. In this review article, we briefly demonstrate the characteristics of microwave-synthesized nanomaterials for next-generation energy storage devices. Starting with the basics of microwave heating, herein, we illustrate the past and present status of microwave chemistry for energy-related applications, and finally present a brief outlook and concluding remarks. We hope that this review article will positively convey new insights for the microwave synthesis of nanomaterials for energy storage applications.
Collapse
Affiliation(s)
- Nitika Devi
- School of Physical and Material Sciences, Central University of Himachal Pradesh (CUHP), Dharamshala, Kangra, HP-176215, India.
| | | | | | | |
Collapse
|
14
|
Dual-doping activated carbon with hierarchical pore structure derived from polymeric porous monolith for high performance EDLC. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Abstract
Herein, metal-free heteroatom doped carbon-based materials are being reviewed for supercapacitor and energy applications. Most of these low-cost materials considered are also derived from renewable resources. Various forms of carbon that have been employed for supercapacitor applications are described in detail, and advantages as well as disadvantages of each form are presented. Different methodologies that are being used to develop these materials are also discussed. To increase the specific capacitance, carbon-based materials are often doped with different elements. The role of doping elements on the performance of supercapacitors has been critically reviewed. It has been demonstrated that a higher content of doping elements significantly improves the supercapacitor behavior of carbon compounds. In order to attain a high percentage of elemental doping, precursors with variable ratios as well as simple modifications in the syntheses scheme have been employed. Significance of carbon-based materials doped with one and more than one heteroatom have also been presented. In addition to doping elements, other factors which play a key role in enhancing the specific capacitance values such as surface area, morphology, pore size electrolyte, and presence of functional groups on the surface of carbon-based supercapacitor materials have also been summarized.
Collapse
|
16
|
Meng X, Zhang J, Chen Q, Hou L, Yuan C. Polyacrylamide hydrogel-derived three-dimensional hierarchical porous N,S co-doped carbon frameworks for electrochemical capacitors. NEW J CHEM 2020. [DOI: 10.1039/d0nj04942e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyacrylamide hydrogel-derived 3D porous hierarchical N,S co-doped carbon frameworks are purposefully fabricated, and exhibit superior electrochemical capacitance in both alkaline and acidic electrolytes.
Collapse
Affiliation(s)
- Xiaotang Meng
- School of Material Science & Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Jinyang Zhang
- School of Material Science & Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Qiuli Chen
- School of Material Science & Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Linrui Hou
- School of Material Science & Engineering
- University of Jinan
- Jinan
- P. R. China
| | - Changzhou Yuan
- School of Material Science & Engineering
- University of Jinan
- Jinan
- P. R. China
| |
Collapse
|