1
|
Wang Y, Wang H, Ji J, You T, Lu C, Liu C, Song Y, Chen Z, Zhu S. Hydrothermal synthesis and electrochemical properties of Sn-based peanut shell biochar electrode materials. RSC Adv 2024; 14:6298-6309. [PMID: 38380232 PMCID: PMC10877239 DOI: 10.1039/d3ra08655k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Using activated-carbon-based electrodes derived from waste biomass in super-capacitor energy technologies is an essential future strategy to achieve sustainable energy and environmental protection. Biomass feed-stocks such as bamboo and straw have been used to prepare activated carbon-based electrodes. This experiment used peanut shells (waste biomass) as carbon precursors. Peanut shell-activated biochar materials were prepared using KOH activation and heat treatment, and SnO2@KBC-CNTs, a composite electrode material of biochar loaded with tin oxide. It was produced through hydrothermal synthesis, utilizing SnCl4-5H2O as the tin precursor. The application of KOH activators during pyrolysis markedly enhanced the porosity and specific surface area of the resultant activated biochar, due to effective dispersion and degradation of pyrolytic products. Characterized by a micro-mesoporous structure, the composite's pores boasted a specific surface area of 158.69 m2 g-1. When tested at a density of current of 0.5 A g-1, the specific capacitance of SnO2@KBC-CNTs reached 198.62 F g-1, nearly doubling the performance of the KBC electrode material alone. Moreover, the composite demonstrated a low ion transfer resistance of 0.71 Ω during charge-discharge cycles.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Environmental Engineering, Henan University of Science and Technology Luoyang 471023 China
| | - Hui Wang
- Department of Environmental Engineering, Henan University of Science and Technology Luoyang 471023 China
| | - Jiangtao Ji
- College of Agricultural Equipment Engineering, Henan University of Science and Technology Luoyang 471003 China
| | - Tianyan You
- College of Agricultural Equipment Engineering, Henan University of Science and Technology Luoyang 471003 China
| | - Chang Lu
- School of Materials Science and Engineering, Henan University of Science and Technology Luoyang 471023 Canada
| | - Cuiyun Liu
- Department of Environmental Engineering, Henan University of Science and Technology Luoyang 471023 China
| | - Yang Song
- College of Agricultural Equipment Engineering, Henan University of Science and Technology Luoyang 471003 China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University Montreal H3G 1M8 Canada
| | - Shufa Zhu
- Department of Environmental Engineering, Henan University of Science and Technology Luoyang 471023 China
| |
Collapse
|
2
|
Ullah H, Ahmad R, Khan AA, Lee NE, Lee J, Shah AU, Khan M, Ali T, Ali G, Khan Q, Cho SO. Anodic SnO 2 Nanoporous Structure Decorated with Cu 2O Nanoparticles for Sensitive Detection of Creatinine: Experimental and DFT Study. ACS OMEGA 2022; 7:42377-42395. [PMID: 36440133 PMCID: PMC9685770 DOI: 10.1021/acsomega.2c05471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
Advanced anodic SnO2 nanoporous structures decorated with Cu2O nanoparticles (NPs) were employed for creatinine detection. Anodization of electropolished Sn sheets in 0.3 M aqueous oxalic acid electrolyte under continuous stirring produced complete open top, crack-free, and smooth SnO2 nanoporous structures. Structural analyses confirm the high purity of rutile SnO2 with successful functionalization of Cu2O NPs. Morphological studies revealed the formation of self-organized and highly-ordered SnO2 nanopores, homogeneously decorated with Cu2O NPs. The average diameter of nanopores is ∼35 nm, while the average Cu2O particle size is ∼23 nm. Density functional theory results showed that SnO2@Cu2O hybrid nanostructures are energetically favorable for creatinine detection. The hybrid nanostructure electrode exhibited an ultra-high sensitivity of around 24343 μA mM-1 cm-2 with an extremely lower detection limit of ∼0.0023 μM, a fast response time (less than 2 s), and wide linear detection ranges of 2.5-45 μM and 100 μM to 15 mM toward creatinine. This is ascribed to the creation of highly active surface sites as a result of Cu2O NP functionalization, SnO2 band gap diminution, and the formation of heterojunction and Cu(1)/Cu(ll)-creatinine complexes through secondary amines which occur in the creatinine structure. The real-time analysis of creatinine in blood serum by the fabricated electrode evinces the practicability and accuracy of the biosensor with reference to the commercially existing creatinine sensor. The proposed biosensor demonstrated excellent stability, reproducibility, and selectivity, which reflects that the SnO2@Cu2O nanostructure is a promising candidate for the non-enzymatic detection of creatinine.
Collapse
Affiliation(s)
- Habib Ullah
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa (KPK), Chakdara18800, Pakistan
- Department
of Nuclear and Quantum Engineering (NQe), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon34141, South Korea
| | - Rashid Ahmad
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa (KPK), Chakdara18800, Pakistan
| | - Adnan Ali Khan
- Department
of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa (KPK), Chakdara18800, Pakistan
| | - Na Eun Lee
- Department
of Nuclear and Quantum Engineering (NQe), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon34141, South Korea
| | - Jaewoo Lee
- Department
of Nuclear and Quantum Engineering (NQe), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon34141, South Korea
| | - Atta Ullah Shah
- National
Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad45650, Pakistan
| | - Maaz Khan
- Nanomaterials
Research Group, PD, PINSTECH, Nilore, Islamabad45650, Pakistan
| | - Tahir Ali
- Microstructural
Studies Group, PD, PINSTECH, Nilore, Islamabad45650, Pakistan
| | - Ghafar Ali
- Nanomaterials
Research Group, PD, PINSTECH, Nilore, Islamabad45650, Pakistan
| | - Qasim Khan
- Department
of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, OntarioN2L 3G1, Canada
| | - Sung Oh Cho
- Department
of Nuclear and Quantum Engineering (NQe), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon34141, South Korea
| |
Collapse
|
3
|
Liu R, Wang JX, Yang WD. Hierarchical Porous Heteroatoms-Co-Doped Activated Carbon Synthesized from Coconut Shell and Its Application for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3504. [PMID: 36234631 PMCID: PMC9565498 DOI: 10.3390/nano12193504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Coconut husk biomass waste was used as the carbon precursor to develop a simple and economical process for the preparation of hierarchical porous activated carbon, and the electrochemical properties of the electrode material were explored. The important process variables of carbonization, the weight ratios of the coconut shell/KOH, the amount of source dopant, and the carbonization temperature were investigated in order to reveal the influence of the as-obtained microporous/mesoporous/macroporous hierarchical porous carbon materials on the powder properties. Using a BET specific surface area analyzer, Raman analysis, XPS and SEM, surface morphology, pore distribution and specific surface area of the hierarchical porous carbon materials are discussed. The results show that the as-prepared N-, S- and O-heteroatom-co-doped activated carbon electrode was manufactured at 700 °C for electrochemical characteristics. The electrochemical behavior has the characteristics of pseudo-capacitance, and could reach 186 F g-1 at 1 A g-1 when measured by the galvanostatic charge-discharge (GCD) test. After 7000 cycles of the charge-discharge test, the initial capacitance value retention rate was 95.6%. It is predicted that capacitor materials made when using coconut shell as a carbon source will have better energy storage performance than traditional carbon supercapacitors.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology, School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Jing-Xuan Wang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Wein-Duo Yang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
4
|
Safari M, Mazloom J, Boustani K, Monemdjou A. Hierarchical Fe 2O 3 hexagonal nanoplatelets anchored on SnO 2 nanofibers for high-performance asymmetric supercapacitor device. Sci Rep 2022; 12:14919. [PMID: 36056049 PMCID: PMC9440100 DOI: 10.1038/s41598-022-18840-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Metal oxide heterostructures have gained huge attention in the energy storage applications due to their outstanding properties compared to pristine metal oxides. Herein, magnetic Fe2O3@SnO2 heterostructures were synthesized by the sol-gel electrospinning method at calcination temperatures of 450 and 600 °C. XRD line profile analysis indicated that fraction of tetragonal tin oxide phase compared to rhombohedral hematite was enhanced by increasing calcination temperature. FESEM images revealed that hexagonal nanoplatelets of Fe2O3 were hierarchically anchored on SnO2 hollow nanofibers. Optical band gap of heterogeneous structures was increased from 2.06 to 2.40 eV by calcination process. Vibrating sample magnetometer analysis demonstrated that increasing calcination temperature of the samples reduces saturation magnetization from 2.32 to 0.92 emu g-1. The Fe2O3@SnO2-450 and Fe2O3@SnO2-600 nanofibers as active materials coated onto Ni foams (NF) and their electrochemical performance were evaluated in three and two-electrode configurations in 3 M KOH electrolyte solution. Fe2O3@SnO2-600/NF electrode exhibits a high specific capacitance of 562.3 F g-1 at a current density of 1 A g-1 and good cycling stability with 92.8% capacitance retention at a high current density of 10 A g-1 after 3000 cycles in three-electrode system. The assembled Fe2O3@SnO2-600//activated carbon asymmetric supercapacitor device delivers a maximum energy density of 50.2 Wh kg-1 at a power density of 650 W kg-1. The results display that the Fe2O3@SnO2-600 can be a promising electrode material in supercapacitor applications.
Collapse
Affiliation(s)
- Morteza Safari
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran
| | - Jamal Mazloom
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran.
| | - Komail Boustani
- Department of Physics, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Ali Monemdjou
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran
| |
Collapse
|
5
|
Reddy Pallavolu M, Tanaya Das H, Anil Kumar Y, Naushad M, Sambasivam S, Hak Jung J, Joo SW. Marigold flower-like Sn3O4 nanostructures as efficient battery-type electrode material for high-performing asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Das JK, Padhy A, Parida S, Pathi RM, Behera JN. Tetra germanium nonaselenide enwrapped with reduced graphene oxide and functionalized carbon nanotubes (Ge 4Se 9/RGO/FCNTs) hybrids for improved energy storage performances. Dalton Trans 2022; 51:11526-11535. [PMID: 35838188 DOI: 10.1039/d2dt01637k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of multifunctional layered semiconductor materials and their carbonaceous hybrids as acceptable positive electrode materials for supercapacitor application is of key interest. Ternary germanium selenide (Ge4Se9) with reduced graphene oxide (RGO) and functionalized carbon nanotube (FCNT) hybrids were successfully synthesized by following a one-step hydrothermal approach, and their electrochemical energy storage performance toward supercapacitor (SC) applications was investigated. It was observed that the specific capacitance of Ge4Se9/RGO/FCNTs was 440 F g-1 at 1 A g-1 in an acidic (1 M H2SO4) medium. Further, the material showed 83% retention of its own initial value of capacitance with 98% coulombic efficiency after 5000 galvanostatic charge-discharge cycles. Considering the two-dimensional (2D) layered structures of MXenes with their greater stability, exceptional hydrophilicity, and pseudocapacitive behavior in aqueous electrolytes makes them an alternative for the fabrication of asymmetric SC devices. The above findings about MXenes suggest the design of an asymmetric device using MXene as the negative electrode material and as-prepared Ge4Se9/RGO/FCNTs as the positive electrode material in a similar electrolyte media. The fabricated Ge4Se9/RGO/FCNTs//MXenes displayed a higher specific capacitance of 102 F g-1 at 1 A g-1, with an acceptable energy density (E.D.) of 32 W h kg-1 and a power density (P.D.) of 1071 W kg-1. Furthermore, over long-term repeated 5000 GCD cycles the fabricated device retained 92% of its initial capacitance and good reversibility (96% coulombic efficiency), making the Ge4Se9/RGO/FCNT//MXenes assembly a preferable electrode material for enhancing asymmetric SC performance.
Collapse
Affiliation(s)
- Jiban K Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India. .,Centre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India
| | - Abhisek Padhy
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India. .,Centre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India
| | - Smrutimedha Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India. .,Centre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India
| | - Radha Madhab Pathi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India. .,Centre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India. .,Centre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India
| |
Collapse
|
7
|
Hussain I, Sahoo S, Sayed MS, Ahmad M, Sufyan Javed M, Lamiel C, Li Y, Shim JJ, Ma X, Zhang K. Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214429] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Koventhan C, Vinothkumar V, Chen SM. Rational design of manganese oxide/tin oxide hybrid nanocomposite based electrochemical sensor for detection of prochlorperazine (Antipsychotic drug). Microchem J 2022. [DOI: 10.1016/j.microc.2021.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Mishra SR, Ahmaruzzaman M. Tin oxide based nanostructured materials: synthesis and potential applications. NANOSCALE 2022; 14:1566-1605. [PMID: 35072188 DOI: 10.1039/d1nr07040a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In view of their inimitable characteristics and properties, SnO2 nanomaterials and nanocomposites have been used not only in the field of diverse advanced catalytic technologies and sensors but also in the field of energy storage such as lithium-ion batteries and supercapacitors, and in the field of energy production such as solar cells and water splitting. This review discusses the various synthesis techniques such as traditional methods, including processes like thermal decomposition, chemical vapor deposition, electrospinning, sol-gel, hydrothermal, solvothermal, and template-mediated methods and green methods, which include synthesis through plant-mediated, microbe-mediated, and biomolecule-mediated processes. Moreover, the advantages and limitations of these synthesis procedures and how to overcome them that would lead to future research are also discussed. This literature also focuses on various applications such as environmental remediation, energy production, energy storage, and removal of biological contaminants. Therefore, the rise and journey of SnO2-based nanocomposites will motivate the modern generation of chemists to modify and design robust nanoparticles and nanocomposites that can effectively tackle significant environmental challenges. This overview concludes by providing future perspectives on research into tin oxide in synthesis and its various applications.
Collapse
Affiliation(s)
- Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology, Silchar - 788010, Assam, India.
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar - 788010, Assam, India.
| |
Collapse
|
10
|
Gao N, Cao J, Wang C, Gao Z, Li R, Ding G, Ma H, Wang Y, Zhang L. Study on the Crystallinity and Oxidation States of Nanoporous Anodized Tin Oxide Films Regulated by Annealing Treatment for Supercapacitor Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:164-173. [PMID: 34931850 DOI: 10.1021/acs.langmuir.1c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, electrodeposition combined with anodization was employed to prepare a nanoporous tin oxide film on a pure copper substrate. It was found that annealing temperature played a critically significant role in regulating the crystallinity, pore size, and contents of different oxidation states of the anodized tin oxide film to affect the electrochemical performance. The study verified that SnOx films treated by optimized annealing at 500 °C with precisely controlling the nanoporous morphology and crystallinity displayed competitive specific capacitance at an appropriate ratio of Sn4+ to Sn2+. A maximum specific capacitance of 86.2 mF/cm2 could be achieved at this temperature, and the capacitance retention rate still exceeded 90% even after 8000 charge-discharge cycles. With properly designed annealing treatment, we implemented tin film anodization to obtain an optimized electrode with significantly enhanced electrochemical performance, which shows a promising application in the electrochemical field to prepare electrodes.
Collapse
Affiliation(s)
- Nan Gao
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinwei Cao
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chen Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhaoqing Gao
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ruofan Li
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guoxin Ding
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haitao Ma
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yunpeng Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liping Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou 310024, China
| |
Collapse
|
11
|
Tang P, Cao Y, Qiu W. Preparation and Properties of an Ultrahigh-Energy-Density Aqueous Supercapacitor with a Superconcentrated Electrolyte and a Sr-Modified Lanthanum Zirconate Flexible Electrode. ACS OMEGA 2021; 6:24720-24730. [PMID: 34604654 PMCID: PMC8482463 DOI: 10.1021/acsomega.1c03486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Although supercapacitors are considered to play a vital role in flexible electronic devices, there are still some problems that need to be overcome, such as low energy density and narrow electrochemical stability windows in aqueous electrolytes. Herein, we have successfully synthesized a series of Sr-modified La2Zr2O7 (LZO-x) nanofibers as a new electrode material by a facile electrospinning technique. To determine the best doping sample, the changes in structures and electrochemical performances of La2Zr2O7 (LZO-x) nanofibers with various Sr contents are investigated carefully. Then, the LZO-0.2 sample shows the highest capacitance (1445 mF·cm-2). Furthermore, we also develop a low-cost superconcentrated electrolyte, which achieves a wide electrochemical stability window of 2.7 V using a working electrode (LZO-0.2). Finally, we use the LZO-0.2 electrode and the superconcentrated electrolyte to fabricate a flexible supercapacitor device, which shows an excellent capacitance of 175 F·g-1 at a current density of 1.15 A·g-1. Moreover, the aqueous device has excellent cycle stability and outstanding flexibility, and the energy density of this device is 177.2 Wh·kg-1 and the corresponding power density is 1557.7 W·kg-1.
Collapse
Affiliation(s)
- Peiyuan Tang
- South
China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yi Cao
- China-Ukraine
Belt and Road Joint Laboratory on Materials Joining and Advanced Manufacturing,
Guangdong Provincial Key Laboratory of Advanced Welding Technology,
China-Ukraine Institute of Welding, Guangdong
Academy of Sciences, Guangzhou 510650, P. R. China
| | - Wenfeng Qiu
- South
China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
12
|
Yang C, Hong L, Chong P, Li Y, Wei M. Tin-based metal-phosphine complexes nanoparticles as long-cycle life electrodes for high-performance hybrid supercapacitors. J Colloid Interface Sci 2021; 606:148-157. [PMID: 34388567 DOI: 10.1016/j.jcis.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
New tin-based metal-phosphine complexes of [Sn(OH)4(PPh3)2] and [Sn(OH)2(PPh3)2] have been successfully synthesized and used as supercapacitor electrodes for the first time, exhibiting a high specific capacitance, a good rate capability, and an excellent cycling stability. The specific capacitances (highest specific capacitance for tin-based materials) of 1204F g-1 and 764F g-1 for two samples at a current density of 1 A g-1 in 6 M KOH can respectively be achieved, and their capacitance retention remained at 95.1% and 89.2% even after 15,000 cycles at a current density of 10 A g-1. Furthermore, a flexible quasi-solid-state asymmetric supercapacitor composed of Sn(OH)2(PPh3)2 and activated carbon was assembled and exhibited a specific capacitance of 290.6 mF cm-2 at a current density of 1 mA cm-2. More importantly, this device also displayed excellent cyclic stability of ∼100% for 1800 cycles during the galvanostatic charge/discharge process at 5 mF cm-2.
Collapse
Affiliation(s)
- Chengyu Yang
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Lvyin Hong
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Peidian Chong
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Yafeng Li
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China.
| | - Mingdeng Wei
- Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
13
|
Lin L, Chen S, Deng T, Zeng W. Oxygen-Deficient Stannic Oxide/Graphene for Ultrahigh-Performance Supercapacitors and Gas Sensors. NANOMATERIALS 2021; 11:nano11020372. [PMID: 33540619 PMCID: PMC7912979 DOI: 10.3390/nano11020372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 11/27/2022]
Abstract
The metal oxides/graphene nanocomposites have great application prospects in the fields of electrochemical energy storage and gas sensing detection. However, rational synthesis of such materials with good conductivity and electrochemical activity is the topical challenge for high-performance devices. Here, SnO2/graphene nanocomposite is taken as a typical example and develops a universal synthesis method that overcome these challenges and prepares the oxygen-deficient SnO2 hollow nanospheres/graphene (r-SnO2/GN) nanocomposite with excellent performance for supercapacitors and gas sensors. The electrode r-SnO2/GN exhibits specific capacitance of 947.4 F g−1 at a current density of 2 mA cm−2 and of 640.0 F g−1 even at 20 mA cm−2, showing remarkable rate capability. For gas-sensing application, the sensor r-SnO2/GN showed good sensitivity (~13.8 under 500 ppm) and short response/recovering time toward methane gas. These performance features make r-SnO2/GN nanocomposite a promising candidate for high-performance energy storage devices and gas sensors.
Collapse
Affiliation(s)
- Liyang Lin
- School of Aeronautics, Chongqing Jiaotong University, Chongqing 400074, China;
- The Green Aerotechnics Research Institute, Chongqing Jiaotong University, Chongqing 400714, China
- Correspondence:
| | - Susu Chen
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China;
| | - Tao Deng
- School of Aeronautics, Chongqing Jiaotong University, Chongqing 400074, China;
- The Green Aerotechnics Research Institute, Chongqing Jiaotong University, Chongqing 400714, China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
| |
Collapse
|