1
|
Du Q, Wang Y, Fan X, Li X, Liu Y, Jiao P, Xing P, Yin R, Gan W. Carbonized Wood Decorated with Ternary Heterogeneous MoS 2-MoP-Mo 2C Nanoparticles for pH-Universal Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39977727 DOI: 10.1021/acsami.4c21484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The assembly of diverse active materials significantly enhances the efficiency of the electrocatalytic hydrogen evolution reaction (HER). Herein, we prepare a three-phase composite structure electrocatalyst on carbonized wood, in which molybdenum carbide and molybdenum phosphide are attached to molybdenum sulfide nanosheets (MoS2-MoP-Mo2C@CW) through the hydrothermal method in combination with high-temperature calcination for a pH-universal HER. MoS2 possesses abundant unsaturated coordination edge active sites, thus facilitating the adsorption and desorption of the hydrogen intermediate (H*). The synergistic effect between MoS2, MoP featuring favorable electronic conductivity, and Mo2C holding strong adsorption of H* enhances the catalytic activity for the pH-universal HER. Moreover, the carbonized wood with a hierarchical porous structure and aligned microchannels accelerates mass transport during the HER. As a result, the molybdenum-based self-supported composite electrode exhibits outstanding HER performance with the low overpotentials of 46, 84, and 65 mV to achieve the current density of 10 mA cm-2 and the corresponding Tafel slopes of 57, 111 mV, and 63 mV dec-1 in alkaline, neutral, and acidic environments, respectively. MoS2-MoP-Mo2C@CW also shows a long-term durability of 200 h over a broad pH range at 10 mA cm-2. This work provides an effective strategy for the development of multiphase carbonized wood-based electrocatalysts for the pH-universal HER.
Collapse
Affiliation(s)
- Qiuyu Du
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Yaoxing Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Xueqin Fan
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Xueqi Li
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Yingying Liu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Peng Jiao
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Pengyu Xing
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Ran Yin
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Wentao Gan
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| |
Collapse
|
2
|
Abdul M, Zhang M, Ma T, Alotaibi NH, Mohammad S, Luo YS. Facile synthesis of Co 3Te 4-Fe 3C for efficient overall water-splitting in an alkaline medium. NANOSCALE ADVANCES 2025; 7:433-447. [PMID: 39760026 PMCID: PMC11698179 DOI: 10.1039/d4na00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
The large amounts of attention directed towards the commercialization of renewable energy systems have motivated extensive research to develop non-precious-metal-based catalysts for promoting the electrochemical production of H2 and O2 from water. Here, we report promising technology, i.e., electrochemical water splitting for OER and HER. This work used a simple hydrothermal method to synthesize a novel Co3Te4-Fe3C nanocomposite directly on a stainless-steel substrate. Various physical techniques like XRD, FESEM/EDX, and XPS have been used to characterize the good composite growth and confirm the correlation between the structural features. It has been shown that the composite's morphology consists of interconnected particles, each uniformly coated with a thin layer of carbon. This structure then forms a porous network with defects, which helps stabilize the material and improve its charge conductivity. XPS analysis shows that combining Fe3C with Co3Te4 adjusts the atomic structure of both metals. This interaction creates redox sites (Fe3+/Fe2+ and Co3+/Co2+) at the Co₃Te₄-Fe₃C interface, which are crucial for activating redox reactions and enhancing electrochemical performance. The results also confirm the presence of multiple synergistic active sites, which contribute to improved catalytic activity. The optimized chemical composition and conductive structure result in enhanced electrocatalytic activity of Co3Te4-Fe3C towards electron transportation between the material interface and medium. It is found that the Co3Te4-Fe3C catalyst exhibits robust OER/HER activity with reduced overpotential values of 235/210 mV@10 mA cm-2 and Tafel slopes of 62/45 mV dec-1 in an alkaline solution. For overall water-splitting, cell voltages of 1.44, 1.88, and 2.0 V at current densities of 10, 50, and 100 mA cm-2 were achieved with a stability of 102 h. The electrochemically active surface area of the composite is 1125 cm2, indicating that a large surface area offered numerous reactive sites for electron transfer in the promotion of the electrochemical activity. The enhancement in catalytic performance was also checked using chronoamperometry analysis, reflecting long-term stability. Our results provide a novel idea for designing a composite of carbide with chalcogenide with robust catalytic mechanisms, which is useful for various applications in environmental and energy conversion fields.
Collapse
Affiliation(s)
- M Abdul
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
- Research Institute of Electronic Science and Technology of UESTC Chengdu China
| | - Miao Zhang
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
| | - Tianjun Ma
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
| | - Nouf H Alotaibi
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Yin-Sheng Luo
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
| |
Collapse
|
3
|
Bagdwal H, Sood P, Dhillon AK, Singh A, Singh M. Deciphering the work function induced local charge regulation towards activating an octamolybdate cluster-based solid for acidic water oxidation. NANOSCALE 2024; 16:16420-16429. [PMID: 39171964 DOI: 10.1039/d4nr02645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The advancement of highly robust and efficient electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions is imperative for the sustainable production of green hydrogen. In accomplishing sustainable and sturdy electrocatalysts for oxygen evolution at low pH, the challenge is tough for non-iridium/ruthenium-based electrocatalysts. This study elaborates on the intrinsic alterations in electronic arrangements and structural disorder upon the precise activation of an octamolybdate cluster-based solid [{Cu(pz)4}2Mo8O26]·2H2O through room temperature grinding with rGO (reduced graphene oxide), resulting in enhanced conductivity, stability, and activity of the electrocatalyst towards the acidic OER without employing any benchmark metal ion (Ru or Ir). Additionally, the work function of the composites was found to be low compared to that of pristine polyoxometalates (POMs), indicative of the improved conducive behavior, which is lacking in the POM structure. The catalyst displays a notably reduced overpotential of 185 mV to achieve a current density of 10 mA cm-2, coupled with significant stability lasting 24 hours at a higher current density of 100 mA cm-2. These findings propose the manipulation of crystalline POMs with highly conductive non-metallic elements to facilitate superior water oxidation at lower pH levels which can help in the production of green hydrogen.
Collapse
Affiliation(s)
- Harshita Bagdwal
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Parul Sood
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Arshminder Kaur Dhillon
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Ashi Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Monika Singh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
4
|
Wang Q, Zhao J, Yang X, Li J, Wu C, Shen D, Cheng C, Xu LH. Tuning the electronic metal-carbon interactions in Lignin-based carbon-supported ruthenium-based electrocatalysts for enhanced hydrogen evolution reactions. J Colloid Interface Sci 2024; 664:251-262. [PMID: 38467090 DOI: 10.1016/j.jcis.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Ruthenium (Ru) nanoparticles dispersed on carbon support are promising electrocatalysts for hydrogen evolution reaction (HER) due to strong electronic metal-carbon interactions (EMCIs). Defects engineering in carbon supports is an effective strategy to adjust EMCIs. We prepared nitrogen/sulfur co-doped carbon supported Ru nanoparticles (Ru@N/S-LC) using sodium lignosulfonate and urea as feedstocks. Intrinsic S dopants from sodium lignosulfonate create rich S defects, thus enhancing the EMCIs within Ru@N/S-LC, leading a faster electron transfer between Ru nanoparticles and N/S-LC compared with N-doped carbon supported Ru nanoparticles (Ru@N-CC). The resulting Ru@N/S-LC exhibits an enhanced work function and a down-shifted d-band center, inducing stronger electron capturing ability and weaker hydrogen desorption energy than Ru@N-CC. Ru@N/S-LC requires only 7 and 94 mV overpotential in acidic medium and alkaline medium to achieve a current density of 10 mA cm-2. Density Functional Theory (DFT) calculations were utilized to clarify the impact of sulfur (S) doping and the mechanism underlying the notable catalytic activity of Ru@N/S-LC. This study offers a perspective for utilizing the natural dopants of biomass to adjust the EMCIs for electrocatalysts.
Collapse
Affiliation(s)
- Qichang Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Jing Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Xiaoxuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Jianfei Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China.
| | - Chongbo Cheng
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing 210046, PR China.
| | - Lian-Hua Xu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
5
|
Yu MY, Yao YF, Fang K, Chen LS, Si LP, Liu HY. 2D Metal Porphyrin-Based MOFs and ZIF-8 Composite-Derived Carbon Materials Containing M-N x Active Sites as Bifunctional Electrocatalysts for Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16132-16144. [PMID: 38511296 DOI: 10.1021/acsami.3c18384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The main impediment to the development of zinc-air batteries is the sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Transition metal N-doped carbon catalysts offer a promising alternative to noble metal catalysts, with metal-organic framework (MOF)-derived carbon material catalysts being particularly noteworthy. Here, we synthesized MxP-Z-C carbon catalysts by combining two-dimensional (2D) metal porphyrin-based MOFs (MxPMFs, x = Fe, Co, Ni, Mn) and three-dimensional zeolitic imidazole framework-8 (ZIF-8) through electrostatic interaction, followed by carbonization. ZIF-8 was inserted between the layers of MxPMFs to prevent its Π-Π stacking, allowing the active sites to become fully exposed. MxP-Z-C demonstrated an impressive catalytic activity for both the ORR and the OER reactions. Among them, FeP-Z-C showed the best catalytic activity. The half-wave potential for ORR was 0.92 V (vs the reversible hydrogen electrode (RHE)), while the overpotential for the OER was 290 mV. In addition, the zinc-air battery assembled by FeP-Z-C exhibited high power density (133.14 mW cm-2) and significant specific capacity (816 mAh gZn-1), indicating considerable potential as a bifunctional catalyst for electronic devices.
Collapse
Affiliation(s)
- Min-Yi Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Yan-Fang Yao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Kun Fang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Li-Shui Chen
- Guangzhou Double One Latex Products Co., Ltd., Guangzhou 510830, China
| | - Li-Ping Si
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
6
|
Su C, Wang D, Wang W, Mitsuzaki N, Shao R, Xu Q, Chen Z. Three-dimensional flower-like Ni-S/Co-MOF grown on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting. Phys Chem Chem Phys 2024; 26:7618-7626. [PMID: 38363116 DOI: 10.1039/d3cp05992h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Poor conductivity of the metal-organic frameworks (MOFs) limits their applications in overall water splitting. Surface sulfur (S) doping transition metal hydroxides would effectively improve the conductivity and adjust the electronic structure to generate additional electroactive sites. Herein, we fabricated a Ni-S/Co-MOF/NF catalyst by electroplating a Ni-S film on the 3D flower-like Co-MOF. Because the 3D flower-like structures are covered in Ni foam, the high exposure of active sites and good conductivity are obtained. Moreover, the synergistic effect between Ni-S and Co-MOF contributes to the redistribution of electrons in the catalyst, which can then optimize the catalytic performance of the material. The obtained 3D flower-like Ni-S/Co-MOF/NF demonstrates excellent activity toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in 1 M KOH, which only requires a low overpotential of 248 mV@10 mA cm-2 for the OER and 127 mV@10 mA cm-2 for the HER, respectively. At a current density of 10 mA cm-2, the Ni-S/Co-MOF/NF‖Ni-S/Co-MOF/NF requires a low cell voltage of 1.59 V to split overall water splitting.
Collapse
Affiliation(s)
- Chang Su
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu, 213032, China
| | | | - Rong Shao
- Yancheng Institute Of Technology, Yanchen, 224007, China
| | - Qi Xu
- Yancheng Institute Of Technology, Yanchen, 224007, China
| | - Zhidong Chen
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
7
|
Zhao S, Cao W, Lu L, Tan Z, Wang Y, Wu L, Li J. Three-dimensional ordered macroporous design of heterogeneous cobalt-iron phosphides as oxygen evolution electrocatalyst. NANOTECHNOLOGY 2024; 35:185402. [PMID: 38262057 DOI: 10.1088/1361-6528/ad21a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Oxygen evolution reaction (OER) plays a key role in electrochemical conversion, which needs efficient and economical electrocatalyst to boost its kinetics for large-scale application. Herein, a bimetallic CoP/FeP2heterostructure with a three-dimensional ordered macroporous structure (3DOM-CoP/FeP2) was synthesized as an OER catalyst to demonstrate a heterogeneous engineering induction strategy. By adjusting the electron distribution and producing a lot of active sites, the heterogeneous interface enhances catalytic performance. High specific surface area is provided by the 3DOM structure. Additionally, at the solid-gas-electrolyte threephase interface, the electrocatalytic reaction exhibits good mass transfer.In situRaman spectroscopy characterization revealed that FeOOH and CoOOH reconstructed from CoP/FeP2were the true OER active sites. Consequently, the 3DOM-CoP/FeP2demonstrates superior OER activity with a low overpotentials of 300/420 mV at 10/100 mA cm-2and meritorious OER durability. It also reveals promising performance as the overall water splitting anode.
Collapse
Affiliation(s)
- Songan Zhao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Weijin Cao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Lu Lu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Zhaoyang Tan
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Lanlan Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| |
Collapse
|
8
|
Guzmán-Olivos F, Hernández-Saravia LP, Nelson R, Perez MDLA, Villalobos F. Nanocatalysis MoS 2/rGO: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Molecules 2024; 29:523. [PMID: 38276600 PMCID: PMC10819749 DOI: 10.3390/molecules29020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
In this study, a systematic investigation of MoS2 nanostructure growth on a SiO2 substrate was conducted using a two-stage process. Initially, a thin layer of Mo was grown through sputtering, followed by a sulfurization process employing the CVD technique. This two-stage process enables the control of diverse nanostructure formations of both MoS2 and MoO3 on SiO2 substrates, as well as the formation of bulk-like grain structures. Subsequently, the addition of reduced graphene oxide (rGO) was examined, resulting in MoS2/rGO(n), where graphene is uniformly deposited on the surface, exposing a higher number of active sites at the edges and consequently enhancing electroactivity in the HER. The influence of the synthesis time on the treated MoS2 and also MoS2/rGO(n) samples is evident in their excellent electrocatalytic performance with a low overpotential.
Collapse
Affiliation(s)
- Fernando Guzmán-Olivos
- Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.d.l.A.P.); (F.V.)
| | | | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile;
| | - Maria de los Angeles Perez
- Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.d.l.A.P.); (F.V.)
| | - Francisco Villalobos
- Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.d.l.A.P.); (F.V.)
| |
Collapse
|
9
|
Ahmed M, Kour G, Sun Z, Du A, Mao X. Activating Hydrogen Evolution Reaction on Carbon Nanotube via Aryl Functionalisation: The Role of Hybrid sp 2-sp 3 Interface and Curvature. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2122. [PMID: 37513133 PMCID: PMC10385873 DOI: 10.3390/nano13142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The hydrogen evolution reaction (HER) is a remarkable mechanism which yields the production of hydrogen through a process of water electrolysis. However, the evolution of hydrogen requires highly conductive and stable catalysts, such as the noble metal platinum (Pt). However, the problem lies in the limitations that this catalyst and others of its kind present. Due to limited availability, as well as the costs involved in acquiring such catalysts, researchers are challenged to manufacture catalysts that do not present these limitations. Carbon nanotubes (CNTs), which are nanomaterials, are known to have a wide range of applications. However, specifically, the pristine carbon nanotube is not suitable for the HER due to the binding free energy of its positive H-atoms. Hence, for the first time, we demonstrated the use of the proposed aryl-functionalised catalysts, i.e., Aryl-L@SWCNT (L = Br, CCH, Cl, CO2CH3, F, I, NO2, or t-butyl), along with the effect of the sp2-sp3 hybridised interface through the density functional theory (DFT). We performed calculations of single-walled carbon nanotubes with multiple aryl functional groups. By employing the DFT calculations, we proved that the curvature of the nanotubes along with the proposed aryl-functionalised catalysts had a noteworthy effect on the performance of the HER. Our study opens the door to investigating a promising group of catalysts for sustainable hydrogen production.
Collapse
Affiliation(s)
- Muhammad Ahmed
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
- QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Gurpreet Kour
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
- QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
- QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Aijun Du
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
- QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Xin Mao
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
- QUT Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| |
Collapse
|
10
|
Zhang B, Li J, Song Q, Pang L, Hao X, Liu J, Liu X, Liu H. Self-Adaptive Electronic Structure of Amphoteric Conjugated Ligand-Modified 3 d Metal-C 3 N 4 Smart Electrocatalyst by pH Self-Response Realizing Electrocatalytic Self-Adjustment. CHEMSUSCHEM 2023; 16:e202300078. [PMID: 36748263 DOI: 10.1002/cssc.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/06/2023]
Abstract
Constructing pH-responsive smart material provides a new opportunity to address the problem that traditional electrocatalysts cannot achieve both alkaline oxygen evolution reaction (OER) and acidic hydrogen evolution reaction (HER) activities. In this study, amphoteric conjugated ligand (2-aminoterephthalic acid, BDC-NH2 )-modified 3d metal-anchored graphitic carbon nitride (3d metal-C3 N4 ) smart electrocatalysts are constructed, and self-adaptation of the electronic structure is realized by self-response to pH stimulation, which results in self-adjustment of alkaline OER and acidic HER. Specifically, the amino and carboxyl functional groups in BDC-NH2 undergo protonation and deprotonation respectively under different pH stimulation to adapt to environmental changes. Through DFT calculations, the increase or decrease of electron delocalization range brought by the self-response characteristic is found to lead to redistribution of the Bader charge around the modified active sites. The OER and HER activities are greatly promoted roughly 4.8 and 8.5 times over Co-C3 N4 after BDC-NH2 -induced self-adaptive processes under different environments, arising from the reduced energy barrier of O* to OOH* and ΔGH* . Impressively, the proposed BDC-NH2 -induced smart regulation strategy is applicable to a series of 3d metal anchors for C3 N4 , including Co, Ni and Fe, providing a general structural upgrading method for constructing smart electrocatalytic systems.
Collapse
Affiliation(s)
- Beiyi Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Junqi Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qianqian Song
- College of Materials Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Lingyan Pang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Junli Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiaoxu Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Hui Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
11
|
Wan C, Cui X, Liu M, Xu B, Sun J, Bai S. Structure Features and Physicochemical Performances of Fe-Contained Clinoptilolites Obtained via the Aqueous Exchange of the Balanced Cations and Isomorphs Substitution of the Heulandite Skeletons for Electrocatalytic Activity of Oxygen Evolution Reaction and Adsorptive Performance of CO 2. Molecules 2023; 28:molecules28072889. [PMID: 37049651 PMCID: PMC10095863 DOI: 10.3390/molecules28072889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 04/14/2023] Open
Abstract
Fe(III)-modified clinoptilolites (Fe-CPs) were prepared by hydrothermal treatment. The collapse of the heulandite skeletons was avoided by adjusting the pH value using HCl solution, showing the maximum relative crystallinity of the Fe-CPs at an optimal pH of 1.3. The competitive exchange performances between Fe3+ ions and H+ with Na+ (and K+) suggested that the exchange sites were more easily occupied by H+. Various characterizations verified that the hydrothermal treatments had a strong influence on the dispersion and morphology of the isolated and clustered Fe species. The high catalytic activity of the oxygen evolution reaction indicated the insertion of Fe3+ into the skeletons and the occurrences of isomorphic substitution. The fractal evolutions revealed that hydrothermal treatments with the increase of Fe content strongly affected the morphologies of Fe species with rough and disordered surfaces. Meanwhile, the Fe(III)-modified performances of the CPs were systematically investigated, showing that the maximum Fe-exchange capacity was up to 10.6 mg/g. Their thermodynamic parameters and kinetic performances suggested that the Fe(III)-modified procedures belonged to spontaneous, endothermic, and entropy-increasing behaviors. Finally, their adsorption capacities of CO2 at 273 and 298 K were preliminarily evaluated, showing high CO2 adsorption capacity (up to 1.67 mmol/g at 273 K).
Collapse
Affiliation(s)
- Chunlei Wan
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xueqing Cui
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ming Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Bang Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shiyang Bai
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Sabir AS, Pervaiz E, Khosa R, Sohail U. An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Adv 2023; 13:4963-4993. [PMID: 36793292 PMCID: PMC9924225 DOI: 10.1039/d2ra07901a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, there has been a resurgence of interest in developing green and renewable alternate energy sources as a solution to the energy and environmental problems produced by conventional fossil fuel use. As a very effective energy transporter, hydrogen (H2) is a possible candidate for the future energy supply. Hydrogen production by water splitting is a promising new energy option. Strong, efficient, and abundant catalysts are required for increasing the efficiency of the water splitting process. Cu-based materials as an electrocatalyst have shown promising results for application in the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in water splitting. In this review, our aim is to cover the latest developments in the synthesis, characterisation, and electrochemical behaviour of Cu-based materials as a HER, and OER electrocatalyst, highlighting the impact that these advances have had on the field. It is intended that this review article will serve as a roadmap for developing novel, cost-effective electrocatalysts for electrochemical water splitting based on nanostructured materials with particular emphasis on Cu-based materials for electrocatalytic water splitting.
Collapse
Affiliation(s)
- Abdul Shakoor Sabir
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Erum Pervaiz
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Rafiq Khosa
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Umair Sohail
- Heterogeneous Catalysis Lab, Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| |
Collapse
|
13
|
Fang W, Dang J, Hu Y, Wu Y, Xin S, Chen B, Zhao H, Li Z. Electronic distribution tuning of vanadium-cobalt bimetallic MOFs for highly efficient hydrazine-assisted energy-saving hydrogen production. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Ahanjan K, Shamsipur M, Taherpour A, Pashabadi A. Catalytic synergism in Mn-heterostructured molybdenum oxysulfide hybridized with transition metal phosphides: A robust amorphous water oxidation catalyst. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Ding J, Zhu X, Yue R, Liu W, He S, Pei H, Zhu J, Zheng H, Liu N, Mo Z. Ni-B-Co nanoparticles based on ZIF-67 as efficient electrocatalyst for oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Liu Y, Wang Y, Wen H, Han Y, Deng S. Green Preparation of CNTs/graphite supported NiFe Carbonate Hydroxides for Oxygen Evolution Reaction. ChemCatChem 2022. [DOI: 10.1002/cctc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yang Liu
- Northwest Normal University College of Chemistry and Chemical Engineering Lanzhou, Gansu, 730070, P. R. China 730070 Lanzhou CHINA
| | - Yangchen Wang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - He Wen
- : Petrochina Petrochemical Research Institute Lanzhou Petrochemical Research Cente CHINA
| | - Yuqi Han
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Shuwei Deng
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
17
|
Novel rGO@Fe3O4 nanostructures: An active electrocatalyst for hydrogen evolution reaction in alkaline media. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Jadhav HS, Bandal HA, Ramakrishna S, Kim H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107072. [PMID: 34846082 DOI: 10.1002/adma.202107072] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Design and construction of low-cost electrocatalysts with high catalytic activity and long-term stability is a challenging task in the field of catalysis. Metal-organic frameworks (MOF) are promising candidates as precursor materials in the development of highly efficient electrocatalysts for energy conversion and storage applications. This review starts with a summary of basic concepts and key evaluation parameters involved in the electrochemical water-splitting reaction. Then, different synthesis approaches reported for the cobalt-based Zeolitic imidazolate framework (ZIF-67) and its derivatives are critically reviewed. Additionally, several strategies employed to enhance the electrocatalytic activity and stability of ZIF-67-based electrocatalysts are discussed in detail. The present review provides a succinct insight into the ZIF-67 and its derivatives (oxides, hydroxides, sulfides, selenides, phosphide, nitrides, telluride, heteroatom/metal-doped carbon, noble metal-supported ZIF-67 derivatives) reported for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting applications. Finally, this review concludes with the associated challenges and the perspectives on developing the best economic, durable electrocatalytic materials.
Collapse
Affiliation(s)
- Harsharaj S Jadhav
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
19
|
Gong Y, Yao J, Wang P, Li Z, Zhou H, Xu C. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Conversion of rice husk biomass into electrocatalyst for oxygen reduction reaction in Zn-air battery: Effect of self-doped Si on performance. J Colloid Interface Sci 2022; 606:1014-1023. [PMID: 34487924 DOI: 10.1016/j.jcis.2021.08.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
An outstanding oxygen reduction reaction (ORR) electrocatalyst is firstly developed deriving from sustainable rice husk (RH) biomass. Benefiting from self-doped Si in RH, the higher proportion of pyridine N, graphite N and expecially Fe-Nx as well as thiophene S contents were produced in Si-Fe/S/N-RH3 in comparison with those of Si-free Fe/S/N-RH3. Consequently, the half-wave potential of 0.89 V and the onset potential of 0.96 V are achieved for Si-Fe/S/N-RH3, outperforming the benchmark electrocatalyst Pt/C and other Fe-based electrocatalysts reported in alkaline media. Furthermore, it is found that the exisentence of self-doped Si can improve the graphitization degree of the catalyst, leading to the long-term stability (larger than 85% retention after 40000 s) and prominent methanol tolerance for Si-Fe/S/N-RH3. In addition, Si-Fe/S/N-RH3 shows a power density of 86.2 mW cm-2 and excellent durability in Zn-air battery. The work highlights the potential to develop sustainable and cost-effective ORR electrocatalysts from waste biomass as the substitute for precious metal catalysts.
Collapse
|
21
|
Ding J, Yue R, Zhu X, Liu W, Pei H, He S, Mo Z. Flower-like Co3Ni1B nanosheets based on reduced graphene oxide (rGO) as an efficient electrocatalyst for the oxygen evolution reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj02165j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flower-like Co3Ni1B nanosheets based on a reduced graphene oxide electrocatalyst exhibit a better OER performance than commercial RuO2.
Collapse
Affiliation(s)
- Junxia Ding
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ruimei Yue
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaolun Zhu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wentong Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
22
|
Hao M, Wang H, Zhang X, Qu Y, Xuan C, Wu Z, Cui M, Wang J. In situ construction of self-supporting Ni–Fe sulfide for high-efficiency oxygen evolution. NEW J CHEM 2022. [DOI: 10.1039/d2nj00489e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D nanosheet arrays comprising the self-supporting (Fe,Ni)3S4 composite not only exhibit excellent OER activity but also superior reaction stability due to the combined effect of mesopore-containing 2D nanosheets and the binary metal species.
Collapse
Affiliation(s)
- Mingxin Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Huizhen Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiaoling Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yangdong Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Cuijuan Xuan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, P. R. China
| | - Min Cui
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jie Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
23
|
Nanostructured Fe-N-C as Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution. Catalysts 2021. [DOI: 10.3390/catal11121525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The development of electrocatalysts for energy conversion and storage devices is of paramount importance to promote sustainable development. Among the different families of materials, catalysts based on transition metals supported on a nitrogen-containing carbon matrix have been found to be effective catalysts toward oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) with high potential to replace conventional precious metal-based catalysts. In this work, we developed a facile synthesis strategy to obtain a Fe-N-C bifunctional ORR/HER catalysts, involving wet impregnation and pyrolysis steps. Iron (II) acetate and imidazole were used as iron and nitrogen sources, respectively, and functionalized carbon black pearls were used as conductive support. The bifunctional performance of the Fe-N-C catalyst toward ORR and HER was investigated by cyclic voltammetry, rotating ring disk electrode experiments, and electrochemical impedance spectroscopy in alkaline environment. ORR onset potential and half-wave potential were 0.95 V and 0.86 V, respectively, indicating a competitive performance in comparison with the commercial platinum-based catalyst. In addition, Fe-N-C had also a good HER activity, with an overpotential of 478 mV @10 mAcm−2 and Tafel slope of 133 mVdec−1, demonstrating its activity as bifunctional catalyst in energy conversion and storage devices, such as alkaline microbial fuel cell and microbial electrolysis cells.
Collapse
|
24
|
Wang H, Ai T, Bao W, Zhang J, Wang Y, Kou L, Li W, Deng Z, Song J, Li M. Regulating the electronic structure of Ni3S2 nanorods by heteroatom vanadium doping for high electrocatalytic performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Liu J, Zhao S, Wang C, Ma Y, He L, Liu B, Zhang Z. Catkin-derived mesoporous carbon-supported molybdenum disulfide and nickelhydroxyloxide hybrid as a bifunctional electrocatalyst for driving overall water splitting. J Colloid Interface Sci 2021; 608:1627-1637. [PMID: 34742079 DOI: 10.1016/j.jcis.2021.10.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023]
Abstract
In this work, a two-dimensional heterostructure of molybdenum disulfide (MoS2) and nickelhydroxyloxide (NiOOH) nanosheets supported on catkin-derived mesoporous carbon (C-MC) was constructed and exploited as an efficient electrocatalyst for overall water splitting. The C-MC nanostructure was prepared by pyrolyzing biomass material of catkin at 600 °C in N2 atmosphere. The C-MC network exhibited hollow nanotube structure and had a large specific surface area, comprising trace nitrogen and a large amount of oxygen vacancies. It further served as the support for the growth of NiOOH nanosheets (NiOOH@C-MC), which was combined with MoS2 nanosheets by in situ growth, yielding a multicomponent electrocatalyst (MoS2@NiOOH@C-MC). By integrating the superior hydrogen evolution reaction (HER) performance of MoS2, oxygen evolution reaction (OER) performance of NiOOH, and the fast electron transfer capability of C-MC, the prepared MoS2@NiOOH@C-MC illustrated a low potential of - 250 mV for HER and 1.51 V for OER at the current density of 10 mV cm-2. Consequently, when applied as the working electrode for driving overall water splitting in a two-electrode system, the bifunctional MoS2@NiOOH@C-MC electrocatalyst displayed a low cell voltage of 1.62 V at the current density of 10 mA cm-2. The present work provides a new strategy that uses biomass material for developing bifunctional electrocatalyst for overall water splitting.
Collapse
Affiliation(s)
- Jiameng Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China
| | - Shuangrun Zhao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Changbao Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Yashen Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Linghao He
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China.
| | - Zhihong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| |
Collapse
|
26
|
Rehman Shah HU, Ahmad K, Naseem HA, Parveen S, Ashfaq M, Rauf A, Aziz T. Water stable graphene oxide metal-organic frameworks composite (ZIF-67@GO) for efficient removal of malachite green from water. Food Chem Toxicol 2021; 154:112312. [PMID: 34102214 DOI: 10.1016/j.fct.2021.112312] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 01/13/2023]
Abstract
Malachite green (MG) is extensively applied in aquaculture worldwide as a therapeutic agent. MG and its primary metabolite leucomalachite green (LMG) are commonly detected in aquaculture products. MG can cause serious health concerns (in vivo carcinogenic/genotoxic). The extensive water solubility of MG leads to water pollution and hence it is mandatory to remove MG from water. The current study explores adsorptive removal of MG from water using highly water stable Zeolitic Imidazolate framework/graphene oxide composites (ZIF-67@GO). Adsorption performance of newly synthesized composites is justified for MG removal with excellent results of pseudo second order (R2 = 0.99955) which is well-fitted in this case. ZIF-67@GO data of adsorption isotherm for MG is observed using Freundlich Model (R2 = 0.99999) and with adsorption capacity value observed (134.79 mg/g) with removal efficiency of 99.18%, indicates π-staking and electrostatic association between ZIF-67@GO and MG molecules. Synthesized material has retained reusability while removal efficiency reduced only by 6% after many cycles. Furthermore, factors effecting absorption like contact time, pH, adsorbent dose and quantity and temperature are also determined.
Collapse
Affiliation(s)
- Habib Ur Rehman Shah
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan; Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, United States.
| | - Khalil Ahmad
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan
| | - Hafiza Ammara Naseem
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan
| | - Sajidah Parveen
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan.
| | - Abdul Rauf
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan
| | - Tariq Aziz
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan
| |
Collapse
|
27
|
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
28
|
Liu Y, Ma Z, Xin N, Ying Y, Shi W. High-performance supercapacitor based on highly active P-doped one-dimension/two-dimension hierarchical NiCo 2O 4/NiMoO 4 for efficient energy storage. J Colloid Interface Sci 2021; 601:793-802. [PMID: 34102407 DOI: 10.1016/j.jcis.2021.05.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Multi-dimensional metal oxides have become a promising alternative electrode material for supercapacitors due to their inherent large surface area. Herein, P-doped NiCo2O4/NiMoO4 multi-dimensional nanostructures are synthesized on carbon clothes (CC) with a continuous multistep strategy. Especially, P has the best synergistic effect with transition metals, such as optimal deprotonation energy and OH- adsorption energy, which can further enhance electrochemical reaction activity. For the above reasons, the P-NiCo2O4/NiMoO4@CC electrode exhibits an ultra-high specific capacitance of 2334.0 F g-1 at 1 A g-1. After 1500 cycles at a current density of 10 A g-1, its specific capacity still maintains 93.7%. Besides, a P-NiCo2O4/NiMoO4@CC//activated carbon device (hybrid supercapacitor or device) was also prepared with a maximum energy density of 45.1 Wh kg-1 at a power density of 800 W kg-1. In particular, the capacity retention rate is still 89.97% after 8000 cycles due to its excellent structural stability. Our work demonstrates the vast potential of multi-dimensional metal oxides in energy storage.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Oliter Energy Technology Co, Ltd, Gaoyou 225600, PR China.
| | - Zhenlin Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Na Xin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
29
|
Wang K, Hui KN, San Hui K, Peng S, Xu Y. Recent progress in metal-organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application. Chem Sci 2021; 12:5737-5766. [PMID: 34168802 PMCID: PMC8179663 DOI: 10.1039/d1sc00095k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Graphene or chemically modified graphene, because of its high specific surface area and abundant functional groups, provides an ideal template for the controllable growth of metal-organic framework (MOF) particles. The nanocomposite assembled from graphene and MOFs can effectively overcome the limitations of low stability and poor conductivity of MOFs, greatly widening their application in the field of electrochemistry. Furthermore, it can also be utilized as a versatile precursor due to the tunable structure and composition for various derivatives with sophisticated structures, showing their unique advantages and great potential in many applications, especially energy storage and conversion. Therefore, the related studies have been becoming a hot research topic and have achieved great progress. This review summarizes comprehensively the latest methods of synthesizing MOFs/graphene and their derivatives, and their application in energy storage and conversion with a detailed analysis of the structure-property relationship. Additionally, the current challenges and opportunities in this field will be discussed with an outlook also provided.
Collapse
Affiliation(s)
- Kaixi Wang
- School of Engineering, Westlake University Hangzhou 310024 Zhejiang Province China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa Macau SAR China
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa Macau SAR China
| | - Kwan San Hui
- Engineering, Faculty of Science, University of East Anglia Norwich NR4 7TJ UK
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University Zhuhai Guangdong 519000 China
| | - Yuxi Xu
- School of Engineering, Westlake University Hangzhou 310024 Zhejiang Province China
| |
Collapse
|