1
|
Liu Y, Huixiang Ang E, Zhong X, Lu H, Yang J, Gao F, Yu C, Zhu J, Zhu C, Zhou Y, Yang F, Yuan E, Yuan A. Oxygen vacancy modulation in interfacial engineering Fe 3O 4 over carbon nanofiber boosting ambient electrocatalytic N 2 reduction. J Colloid Interface Sci 2023; 652:418-428. [PMID: 37604053 DOI: 10.1016/j.jcis.2023.08.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
The oxygen vacancy modulation of interface-engineered Fe3O4 nanograins over carbon nanofiber (Fe@CNF) was achieved to improve electrocatalytic nitrogen reduction reaction (NRR) activity and stability via facile electrospinning and tuning thermal procedure. The optimal catalyst calcined at 800 ℃ (Fe@CNF-800) was endowed with abundant nanograin boundaries and optimized oxygen vacancy (Vo) concentration of iron oxides, thereby affording 37.1 μg h-1 mgcat.-1 (-0.2 V vs. reversible hydrogen electrode (RHE)) NH3 yield and rational Faraday efficiency (10.2%), with 13.6 times atomic activity enhancement compared to of that commercial Fe3O4. The interfacial effect of assembled nanograins in particles correlated with the formation of Vo and more intrinsic active sites, which is conducive to the trapping and activation of nitrogen (N2). The in-situ X-ray photoelectron spectroscopy (XPS) measurement revealed the real consumption of adsorbed oxygen when introducing N2 by the trapping effect of Vo. Density-Functional-Theory (DFT) calculation validates the promotive hydrogenation effect and elimination of hydrogen intermediate (H*) interacted with N2 transferring toward oxygen of the support. The optimal catalyst shows a lasting NRR activity at least 90 h, outperforming most reported Fe-based NRR catalysts.
Collapse
Affiliation(s)
- Yang Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Xiu Zhong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Hao Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Jun Yang
- School of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Fei Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Chao Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Jiawei Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chengzhang Zhu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China.
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| |
Collapse
|
2
|
Zhang Y, Wang Y, Mou X, Song C, Wang D. Engineering oxygen vacancies and low-valent bismuth at the surface of Bi2MoO6 nanosheets for boosting electrocatalytic N2 reduction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
3
|
Koventhan C, Vinothkumar V, Chen SM. Rational design of manganese oxide/tin oxide hybrid nanocomposite based electrochemical sensor for detection of prochlorperazine (Antipsychotic drug). Microchem J 2022. [DOI: 10.1016/j.microc.2021.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Jiang K, Li K, Li S, Li Y, Li T, Liu YQ, Wang D, Ye Y. FeMo–N nanosheet arrays supported on nickel foam for efficient electrocatalytic N 2 reduction to NH 3 under ambient conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02892a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N content in the M–N bond is closely related to the catalytic activity and greatly improves the NRR performance.
Collapse
Affiliation(s)
- Kun Jiang
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Kai Li
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Shuirong Li
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Yan Li
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Tao Li
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Yun-Quan Liu
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Duo Wang
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Yueyuan Ye
- College of Energy, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Li H, Chen S, He M, Jin J, Zhu K, Peng F, Gao F. Self-supported V-doped NiO electrocatalyst achieving a high ammonia yield of 30.55 μg h −1 cm −2 under ambient conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02867k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanadium doped nickel oxide grows on nickel foam exhibits a splendid NH3 yield and a high faradaic efficiency.
Collapse
Affiliation(s)
- Heen Li
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shuheng Chen
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Maoyue He
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jing Jin
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Kunling Zhu
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Faming Gao
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
6
|
Wen J, Zuo L, Sun H, Wu X, Huang T, Liu Z, Wang J, Liu L, Wu Y, Liu X, van Ree T. Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions. NANOSCALE ADVANCES 2021; 3:5525-5541. [PMID: 36133266 PMCID: PMC9419633 DOI: 10.1039/d1na00426c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 05/23/2023]
Abstract
As an important chemical product and carbon-free energy carrier, ammonia has a wide range of daily applications in several related fields. Although the industrial synthesis method using the Haber-Bosch process could meet production demands, its huge energy consumption and gas emission limit its long-time development. Therefore, the clean and sustainable electrocatalytic N2 reduction reaction (NRR) operating under conditions have attracted great attention in recent years. However, the chemical inertness of N2 molecules makes it difficult for this reaction to proceed. Therefore, rationally designed catalysts need to be introduced to activate N2 molecules. Here, we summarize the recent progress in low-dimensional nanocatalyst development, including the relationship between the structure and NRR performance from both the theoretical and experimental perspectives. Some insights into the development of NRR electrocatalysts from electronic control aspects are provided. In addition, the theoretical mechanisms, reaction pathways and credibility studies of the NRR are discussed. Some challenges and future prospects of the NRR are also pointed out.
Collapse
Affiliation(s)
- Juan Wen
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Linqing Zuo
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Haodong Sun
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Xiongwei Wu
- College of Chemistry and Materials, Hunan Agriculture University Changsha Hunan 410128 China
| | - Ting Huang
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Zaichun Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Jing Wang
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Xiang Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|