1
|
Powroźnik P, Krzywiecki M. Intertwining Density Functional Theory and Experiments in the Investigation of Gas Sensing Mechanisms: A Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:867. [PMID: 39943506 PMCID: PMC11821263 DOI: 10.3390/s25030867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
In this review, we present the last ten years of progress in evaluation of gas sensing mechanisms. We focus mostly on the studies joining theoretical modeling of gas adsorption by density functional theory method with advanced experimental characterization of sensing materials. We provide the background about important aspects that should be taken into account during the design of the effective sensing device and an overview of the most recently studied sensing materials and analytes. Using the exemplary works, we next show how theory and experiment intertwine in revealing how the sensing mechanism serves to improve the device performance. In the end, we summarize the progress already made despite the existing difficulties, and provide an outlook for future methodological development.
Collapse
Affiliation(s)
- Paulina Powroźnik
- Institute of Physics—Center for Science and Education, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | |
Collapse
|
2
|
Tessore F, Pargoletti E, Di Carlo G, Albanese C, Soave R, Trioni MI, Marelli F, Cappelletti G. How the Interplay between SnO 2 and Zn(II) Porphyrins Impacts on the Electronic Features of Gaseous Acetone Chemiresistors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39049749 DOI: 10.1021/acsami.4c05478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Herein, the integration of SnO2 nanoparticles with two Zn(II) porphyrins─Zn(II) 5,10,15,20-tetraphenylporphyrin (ZnTPP) and its perfluorinated counterpart, Zn(II) 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (ZnTPPF20)─was investigated for the sensing of gaseous acetone at 120 °C, adopting three Zn-porphyrin/SnO2 weight ratios (1:4, 1:32, and 1:64). For the first time, we were able to provide evidence of the correlation between the materials' conductivity and these nanocomposites' sensing performances, obtaining optimal results with a 1:32 ratio for ZnTPPF20/SnO2 and showcasing a remarkable detection limit of 200 ppb together with a boosted sensing signal with respect to bare SnO2. To delve deeper, the combination of experimental data with density functional theory calculations unveiled an electron-donating behavior of both porphyrins when interacting with tin dioxide semiconductor, especially for the nonfluorinated one. The study suggested that the interplay between electrons injected, from the porphyrins' highest occupied molecular orbital to SnO2 conduction band, and the latter's available electronic states has a dramatic impact to boost the chemiresistive sensing. Indeed, we highlighted that the key lies in preventing the full saturation of SnO2 electronic states concomitantly increasing the materials' conductivity: in this respect, the best compromise turned out to be the perfluorinated porphyrin. A further corroboration of our findings was obtained by illuminating the sensors during measurements with light-emitting diode (LED) light. Actually, we demonstrated that it does not have any impact on improving the sensing behavior, most probably due to the electronic oversaturation and scattering caused by LED excitation in porphyrins. Lastly, the most effective hybrids (1:32 ratio) were physicochemically characterized, confirming the physisorption of the macrocycles onto the SnO2 surface. In conclusion, herein, we underscore the feasibility of customizing the porphyrin chemistry and porphyrin-to-SnO2 ratio to enhance the gaseous sensing of bare metal oxides, providing valuable insights for the engineering of highly performing light-free chemiresistors.
Collapse
Affiliation(s)
- Francesca Tessore
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Giusti 9, 50121 Florence, Italy
| | - Eleonora Pargoletti
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Giusti 9, 50121 Florence, Italy
| | - Gabriele Di Carlo
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Giusti 9, 50121 Florence, Italy
| | - Cecilia Albanese
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
| | - Raffaella Soave
- National Research Council of Italy, Institute of Chemical Sciences and Technologies "Giulio Natta", Golgi 19, 20133 Milan, Italy
| | - Mario Italo Trioni
- National Research Council of Italy, Institute of Chemical Sciences and Technologies "Giulio Natta", Golgi 19, 20133 Milan, Italy
| | - Federica Marelli
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
| | - Giuseppe Cappelletti
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Giusti 9, 50121 Florence, Italy
| |
Collapse
|
3
|
Li X, Fu L, Karimi-Maleh H, Chen F, Zhao S. Innovations in WO 3 gas sensors: Nanostructure engineering, functionalization, and future perspectives. Heliyon 2024; 10:e27740. [PMID: 38515674 PMCID: PMC10955316 DOI: 10.1016/j.heliyon.2024.e27740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
This review critically examines the progress and challenges in the field of nanostructured tungsten oxide (WO3) gas sensors. It delves into the significant advancements achieved through nanostructuring and composite formation of WO3, which have markedly improved sensor sensitivity for gases like NO2, NH3, and VOCs, achieving detection limits in the ppb range. The review systematically explores various innovative approaches, such as doping WO3 with transition metals, creating heterojunctions with materials like CuO and graphene, and employing machine learning models to optimize sensor configurations. The challenges facing WO3 sensors are also thoroughly examined. Key issues include cross-sensitivity to different gases, particularly at higher temperatures, and long-term stability affected by factors like grain growth and volatility of dopants. The review assesses potential solutions to these challenges, including statistical analysis of sensor arrays, surface functionalization, and the use of novel nanostructures for enhanced performance and selectivity. In addition, the review discusses the impact of ambient humidity on sensor performance and the current strategies to mitigate it, such as composite materials with humidity shielding effects and surface functionalization with hydrophobic groups. The need for high operating temperatures, leading to higher power consumption, is also addressed, along with possible solutions like the use of advanced materials and new transduction principles to lower temperature requirements. The review concludes by highlighting the necessity for a multidisciplinary approach in future research. This approach should combine materials synthesis, device engineering, and data science to develop the next generation of WO3 sensors with enhanced sensitivity, ultrafast response rates, and improved portability. The integration of machine learning and IoT connectivity is posited as a key driver for new applications in areas like personal exposure monitoring, wearable diagnostics, and smart city networks, underlining WO3's potential as a robust gas sensing material in future technological advancements.
Collapse
Affiliation(s)
- Xingxing Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Chengdu, PR China
- School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| |
Collapse
|
4
|
Pakdel H, Galstyan V, D'Arco A, Mancini T, Lupi S, Moumen A, Borsi M, Comini E. Synthesis of WO3 nanopowder using a green surfactant for efficient gas sensing applications. CERAMICS INTERNATIONAL 2023; 49:30501-30509. [DOI: 10.1016/j.ceramint.2023.06.314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Chang YH, Hsieh TH, Hsiao KC, Lin TH, Hsu KH, Wu MC. Electrospun Fibrous Nanocomposite Sensing Materials for Monitoring Biomarkers in Exhaled Breath. Polymers (Basel) 2023; 15:polym15081833. [PMID: 37111980 PMCID: PMC10143897 DOI: 10.3390/polym15081833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Human-exhaled breath mainly contains water, oxygen, carbon dioxide, and endogenous gases closely related to human metabolism. The linear relationship between breath acetone and blood glucose concentration has been revealed when monitoring diabetes patients. Considerable attention has been directed toward developing a highly sensitive volatile organic compounds (VOCs) sensing material that can detect breath acetone. In this study, we propose a tungsten oxide/tin oxide/silver/poly (methyl methacrylate) (WO3/SnO2/Ag/PMMA) sensing material fabricated using the electrospinning technique. By monitoring the evolution of sensing materials' extinction spectra, low concentrations of acetone vapor can be detected. Moreover, the interfaces between SnO2 and WO3 nanocrystals construct n-n junctions, which generate more electron-hole pairs than those without such structure when the light strikes. This helps to improve the sensitivity of sensing materials when they are subjected to acetone surroundings. The established sensing materials (WO3/SnO2/Ag/PMMA) exhibit a sensing limit of 20 ppm for acetone vapor and show specificity for acetone even in ambient humidity.
Collapse
Affiliation(s)
- Yin-Hsuan Chang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Hung Hsieh
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kai-Chi Hsiao
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Han Lin
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kai-Hsiang Hsu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Ming-Chung Wu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Green Technology Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
6
|
Vasiliev A, Shaposhnik A, Moskalev P, Kul O. Kinetics of Chemisorption on the Surface of Nanodispersed SnO 2-PdO x and Selective Determination of CO and H 2 in Air. SENSORS (BASEL, SWITZERLAND) 2023; 23:3730. [PMID: 37050790 PMCID: PMC10098857 DOI: 10.3390/s23073730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
In this work, the kinetics and mechanisms of the interaction of carbon monoxide and hydrogen with the surface of a nanosized SnO2-PdOx metal oxide material in air is studied. Non-stationary temperature regimes make it possible to better identify the individual characteristics of target gases and increase the selectivity of the analysis. Recently, chemometric methods (PCA, PLS, ANN, etc.) are often used to interpret multidimensional data obtained in non-stationary temperature regimes, but the analytical solution of kinetic equations can be no less effective. In this regard, we studied the kinetics of the interaction of carbon monoxide and hydrogen with atmospheric oxygen on the surface of SnO2-PdOx using semiconductor metal oxide sensors under conditions as close as possible to classical gas analysis. An analysis of the influence of catalytic surface temperature on the mechanisms of chemisorption processes allowed us to correctly interpret and mathematically describe the electrophysical characteristics of the sensor in the selective determination of carbon monoxide and hydrogen under nonstationary temperature conditions. The reaction mechanism is applied as well to the analysis of the operation scheme of the CO sensor TGS 2442 of Figaro Inc.
Collapse
Affiliation(s)
- Alexey Vasiliev
- Department of Natural Sciences and Engineering, Dubna State University, 143407 Dubna, Russia
| | - Alexey Shaposhnik
- Department of Chemistry, Voronezh State Agrarian University, 394087 Voronezh, Russia
| | - Pavel Moskalev
- Department of Applied Mathematics and Mechanics, Voronezh State Technical University, 394006 Voronezh, Russia
| | - Oleg Kul
- C-Component, LLC, 125362 Moscow, Russia
| |
Collapse
|
7
|
Trioni MI, Cargnoni F, Americo S, Pargoletti E, Chiarello GL, Cappelletti G. Acetone and Toluene Gas Sensing by WO 3: Focusing on the Selectivity from First Principle Calculations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2696. [PMID: 35957127 PMCID: PMC9370314 DOI: 10.3390/nano12152696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 05/17/2023]
Abstract
Sensitivity and selectivity are the two major parameters that should be optimized in chemiresistive devices with boosted performances towards Volatile Organic Compounds (VOCs). Notwithstanding a plethora of metal oxides/VOCs combinations that have been investigated so far, a close inspection based on theoretical models to provide guidelines to enhance sensors features has been scarcely explored. In this work, we measured experimentally the sensor response of a WO3 chemiresistor towards gaseous acetone and toluene, observing a two orders of magnitude higher signal for the former. In order to gain insight on the observed selectivity, Density Functional Theory was then adopted to elucidate how acetone and toluene molecules adsorption may perturb the electronic structure of WO3 due to electrostatic interactions with the surface and hybridization with its electronic structure. The results of acetone adsorption suggest the activation of the carbonyl group for reactions, while an overall lower charge redistribution on the surface and the molecule was observed for toluene. This, combined with acetone's higher binding energy, justifies the difference in the final responses. Notably, the presence of surface oxygen vacancies, characterizing the nanostructure of the oxide, influences the sensing performances.
Collapse
Affiliation(s)
- Mario Italo Trioni
- National Research Council of Italy, Institute of Chemical Sciences and Technologies “Giulio Natta”, Via Golgi 19, 20133 Milano, Italy
- Department of Chemistry, University of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Fausto Cargnoni
- National Research Council of Italy, Institute of Chemical Sciences and Technologies “Giulio Natta”, Via Golgi 19, 20133 Milano, Italy
| | - Stefano Americo
- Department of Chemistry, University of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Eleonora Pargoletti
- Department of Chemistry, University of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Gian Luca Chiarello
- Department of Chemistry, University of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Giuseppe Cappelletti
- Department of Chemistry, University of Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
8
|
Mao GQ, Yan ZY, Xue KH, Ai Z, Yang S, Cui H, Yuan JH, Ren TL, Miao X. DFT-1/2 and shell DFT-1/2 methods: electronic structure calculation for semiconductors at LDA complexity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:403001. [PMID: 35856860 DOI: 10.1088/1361-648x/ac829d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
It is known that the Kohn-Sham eigenvalues do not characterize experimental excitation energies directly, and the band gap of a semiconductor is typically underestimated by local density approximation (LDA) of density functional theory (DFT). An embarrassing situation is that one usually uses LDA+Ufor strongly correlated materials with rectified band gaps, but for non-strongly-correlated semiconductors one has to resort to expensive methods like hybrid functionals orGW. In spite of the state-of-the-art meta-generalized gradient approximation functionals like TB-mBJ and SCAN, methods with LDA-level complexity to rectify the semiconductor band gaps are in high demand. DFT-1/2 stands as a feasible approach and has been more widely used in recent years. In this work we give a detailed derivation of the Slater half occupation technique, and review the assumptions made by DFT-1/2 in semiconductor band structure calculations. In particular, the self-energy potential approach is verified through mathematical derivations. The aims, features and principles of shell DFT-1/2 for covalent semiconductors are also accounted for in great detail. Other developments of DFT-1/2 including conduction band correction, DFT+A-1/2, empirical formula for the self-energy potential cutoff radius, etc, are further reviewed. The relations of DFT-1/2 to hybrid functional, sX-LDA,GW, self-interaction correction, scissor's operator as well as DFT+Uare explained. Applications, issues and limitations of DFT-1/2 are comprehensively included in this review.
Collapse
Affiliation(s)
- Ge-Qi Mao
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, People's Republic of China
| | - Zhao-Yi Yan
- School of Integrated Circuits, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kan-Hao Xue
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, People's Republic of China
| | - Zhengwei Ai
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, People's Republic of China
| | - Shengxin Yang
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, People's Republic of China
| | - Hanli Cui
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jun-Hui Yuan
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiangshui Miao
- School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, People's Republic of China
| |
Collapse
|
9
|
Weber IC, Derron N, Königstein K, Gerber PA, Güntner AT, Pratsinis SE. Monitoring Lipolysis by Sensing Breath Acetone down to Parts‐per‐Billion. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ines C. Weber
- Particle Technology Laboratory Department of Mechanical and Process Engineering ETH Zurich CH-8092 Zurich Switzerland
| | - Nina Derron
- Department of Endocrinology, Diabetology, and Clinical Nutrition University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Karsten Königstein
- Division Sports and Exercise Medicine Department of Sport, Exercise and Health University of Basel CH-4052 Basel Switzerland
| | - Philipp A. Gerber
- Department of Endocrinology, Diabetology, and Clinical Nutrition University Hospital Zurich (USZ) and University of Zurich (UZH) CH-8091 Zurich Switzerland
| | - Andreas T. Güntner
- Particle Technology Laboratory Department of Mechanical and Process Engineering ETH Zurich CH-8092 Zurich Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology Laboratory Department of Mechanical and Process Engineering ETH Zurich CH-8092 Zurich Switzerland
| |
Collapse
|