1
|
Tomšík E, Boahene S, Dragounová KA, Pfeifer R, Sharma DK, Szabó O, Walterová Z, Potocký Š, Kromka A. Enhanced Electrochemical Performance of Polyaniline-Boron Doped Diamond Electrode for Supercapacitor Applications. SMALL METHODS 2025; 9:e2401523. [PMID: 39757489 PMCID: PMC12020348 DOI: 10.1002/smtd.202401523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Understanding how to tune the properties of electroactive materials is a key parameter for their applications in energy storage systems. This work presents a comprehensive study in tailoring polyaniline (PANI) suspensions by acid-assisted polymerization method and their subsequent deposition on boron-doped diamond (BDD) supports with low/high B concentrations. The porous or densely packed morphology of PANI is successfully controlled by varying the monomer-to-initiator ratio. The interaction between PANI and BDDs leads to the shift in oxidation and reduction potentials, and the high B doping resulted in the reduction of the oxidation potentials. Notably, the highest specific capacitance of 958 F g-1, which represents 90% of the theoretical capacitance, is recorded for the support with relatively low B content. Moreover, PANI obtained by slow kinetic has a stronger interaction with the B-doped diamond support, which is confirmed by electrochemical impedance spectroscopy. This study provides valuable insights for optimizing PANI suspension preparation methods and selecting appropriate boron doping concentrations in nanodiamond supports for composite electrodes in energy storage applications.
Collapse
Affiliation(s)
- Elena Tomšík
- Institute of Macromolecular Chemistry AS CRHeyrovsky nam. 2Prague 6162 00Czech Republic
| | - Stephen Boahene
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
- Czech Technical University in PragueFaculty of Electrical EngineeringTechnická 2Prague162 00Czech Republic
| | - Kateřina Aubrechtová Dragounová
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
- Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PragueBřehová 7Praha 1115 19Czech Republic
| | - Rene Pfeifer
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
| | - Dhananjay Kumar Sharma
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
| | - Ondrej Szabó
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
| | - Zuzana Walterová
- Institute of Macromolecular Chemistry AS CRHeyrovsky nam. 2Prague 6162 00Czech Republic
| | - Štěpán Potocký
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
- Czech Technical University in PragueFaculty of Electrical EngineeringTechnická 2Prague162 00Czech Republic
| | - Alexander Kromka
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 10Prague 6162 00Czech Republic
| |
Collapse
|
2
|
Zhang Z, Zhan X, Hong B, Wang X, Tang P, Ding Y, Xia Y, Zeng Y. Edge interface microenvironment regulation of CoOOH/commercial activated carbon nano-hybrids enabling PMS activation for degrading ciprofloxacin. J Colloid Interface Sci 2024; 663:909-918. [PMID: 38447405 DOI: 10.1016/j.jcis.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Peroxymonosulfate (PMS) is widely employed to generate oxygen-containing reactive species for ciprofloxacin (CIP) degradation. Herein, cobalt oxyhydroxide @activated carbon (CoOOH@AC) was synthesized via a wet chemical sedimentation method to activate PMS for degradation of CIP. The result suggested AC can support the vertical growth of CoOOH nanosheets to expose high-activity Co-contained edges, possessing efficient PMS activation and degradation activity and catalytic stability. In the presence of 3.0 mg of optimal CoOOH@AC and 2 mM PMS, 96.8 % of CIP was degraded within 10 min, approximately 11.6 and 9.97 times greater than those of CoOOH/PMS and AC/PMS systems. Notably, it was disclosed that the optimal CoOOH@AC/PMS system still exhibited efficient catalytic performance in a wide pH range, different organics and common co-existing ions. Quenching experiments and electron paramagnetic resonance indicated that both radical and non-radical processes contributed to the degradation of CIP, with 1O2 and direct electron transfer accounting for the non-radical pathway and SO4•- and •OH serving as the main radical active species. Finally, possible CIP degradation pathways were proposed based on high-performance liquid chromatography-mass spectrometry. This study provided an alternate method for wastewater treatment based on PMS catalyzed by cobalt-based hydroxide.
Collapse
Affiliation(s)
- Zhilong Zhang
- College of Materials and Chemistry, Zhejiang Province Key Laboratory of Magnetic Materials, China Jiliang University, Hangzhou 310018, China
| | - Xingyu Zhan
- College of Materials and Chemistry, Zhejiang Province Key Laboratory of Magnetic Materials, China Jiliang University, Hangzhou 310018, China
| | - Bo Hong
- College of Materials and Chemistry, Zhejiang Province Key Laboratory of Magnetic Materials, China Jiliang University, Hangzhou 310018, China.
| | - Xinqing Wang
- College of Materials and Chemistry, Zhejiang Province Key Laboratory of Magnetic Materials, China Jiliang University, Hangzhou 310018, China
| | - Peisong Tang
- Department of Materials Chemistry, Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Huzhou University, Huzhou 313000, China
| | - Yangbin Ding
- Department of Materials Chemistry, Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Huzhou University, Huzhou 313000, China
| | - Yingchun Xia
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yunxiong Zeng
- College of Materials and Chemistry, Zhejiang Province Key Laboratory of Magnetic Materials, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Ding Y, Zheng J, Gong B, Ni H, Pan G, Tang P, Zhao J. Regulating crystal surface of Cu2O distributed in graphene film to explore supercapacitive performance in liquid or gel electrolyte. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Nnamdi Azikiwe University, Faculty of Engineering, Awka, Nigeria
| |
Collapse
|
5
|
Rasheed S, Ali G, Kousar R, Raza MA, Kubra KT, Jan Iftikhar F. Synthesis and Electrochemical Performance Evaluation of La doped TiO2/reduced graphene oxide Nanocomposites for Supercapacitor Application. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Electrochemical Enhancement of Binary CuSe2@MoSe2 Composite Nanorods for Supercapacitor Application. Top Catal 2022. [DOI: 10.1007/s11244-021-01508-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Zhang H, Zhang F, Li A, Zhao B, Li D, Liu Y, Yang Y, Li F, Liu R, Wei Y. Controllable synthesis of Na, K-based titanium oxide nanoribbons as functional electrodes for supercapacitors and separation of aqueous ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05811h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By facile controllable preparation, as-synthesized NTO and KTO exhibit remarkable electrochemical behavior for the applications of supercapacitors and capacitive deionization.
Collapse
Affiliation(s)
- Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, P. R. China
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Fang Zhang
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Aiyang Li
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
- Environmental Standard Institute, Ministry of Ecology and Environment, Beijing 100012, P. R. China
| | - Bin Zhao
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
| | - Danni Li
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, P. R. China
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Yang Yang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, P. R. China
| | - Fangzhou Li
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Rui Liu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Yuquan Wei
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
8
|
Wang C, Liu N, Wang N, Ma Z, Tian Y, Wang L, Chen X, Hou B. Co-sensitization of TiO2 nanotube arrays with polymerized aromatic amines and its application in photoelectrochemical cathodic protection. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Graphene-based PANI composite coatings with fine-controllable 3D hierarchical structures prepared from bio-inspired photo-/colloidal-lithography technique for flexible supercapacitor application. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
|
11
|
Electrochemical Performance of Titania 3D Nanonetwork Electrodes Induced by Pulse Ionization at Varied Pulse Repetitions. NANOMATERIALS 2021; 11:nano11051062. [PMID: 33919105 PMCID: PMC8143159 DOI: 10.3390/nano11051062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Pulse ionized titania 3D-nanonetworks (T3DN) are emerging materials for fabricating binder-free and carbon-free electrodes for electrochemical energy storage devices. In this article, we investigate the effect of the one of the most important fabrication parameters, pulse frequency, for optimizing supercapacitor efficiency. A series of coin cell batteries with laser-induced electrodes was fabricated; the effect of pulse frequency on oxidation levels and material properties was studied using both experimental and theoretical analysis. Also, detailed electrochemical tests including cyclic voltammetry (CV), charge/discharge, and electrochemical impedance spectroscopy (EIS) were conducted to better understand the effect of pulse frequency on the electrochemical performance of the fabricated devices. The results show that at a frequency of 600 kHz, more T3DN were observed due to the higher temperature and stabler formation of the plasma plume, which resulted in better performance of the fabricated supercapacitors; specific capacitances of samples fabricated at 600 kHz and 1200 kHz were calculated to be 59.85 and 54.39 mF/g at 500 mV/s, respectively.
Collapse
|