1
|
Defects rich- Cu-doped MnO2nanowires as an efficient and durable electrode for high performance aqueous supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
2
|
Tian S, Zhang B, Han D, Gong Z, Li X. Fe 2O 3/Porous Carbon Composite Derived from Oily Sludge Waste as an Advanced Anode Material for Supercapacitor Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3819. [PMID: 36364595 PMCID: PMC9656837 DOI: 10.3390/nano12213819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
It is urgent to improve the electrochemical performance of anode for supercapacitors. Herein, we successfully prepare Fe2O3/porous carbon composite materials (FPC) through hydrothermal strategies by using oily sludge waste. The hierarchical porous carbon (HPC) substrate and fine loading of Fe2O3 nanorods are all important for the electrochemical performance. The HPC substrate could not only promote the surface capacitance effect but also improve the utilization efficiency of Fe2O3 to enhance the pseudo-capacitance. The smaller and uniform Fe2O3 loading is also beneficial to optimize the pore structure of the electrode and enlarge the interface for faradaic reactions. The as-prepared FPC shows a high specific capacitance of 465 F g-1 at 0.5 A g-1, good rate capability of 66.5% retention at 20 A g-1, and long cycling stability of 88.4% retention at 5 A g-1 after 4000 cycles. In addition, an asymmetric supercapacitor device (ASC) constructed with FPC as the anode and MnO2/porous carbon composite (MPC) as the cathode shows an excellent power density of 72.3 W h kg-1 at the corresponding power density of 500 W kg-1 with long-term cycling stability. Owing to the outstanding electrochemical characteristics and cycling performance, the associated materials' design concept from oily sludge waste has large potential in energy storage applications and environmental protection.
Collapse
Affiliation(s)
- Shubing Tian
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Baoling Zhang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dong Han
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqiang Gong
- State Grid Shandong Electric Power Research Institute, Jinan 250003, China
| | - Xiaoyu Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
3
|
Li M, Zhu K, Zhao H, Meng Z. Recent Progress on Graphene-Based Nanocomposites for Electrochemical Sodium-Ion Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2837. [PMID: 36014703 PMCID: PMC9414377 DOI: 10.3390/nano12162837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In advancing battery technologies, primary attention is paid to developing and optimizing low-cost electrode materials capable of fast reversible ion insertion and extraction with good cycling ability. Sodium-ion batteries stand out due to their inexpensive price and comparable operating principle to lithium-ion batteries. To achieve this target, various graphene-based nanocomposites fabricate strategies have been proposed to help realize the nanostructured electrode for high electrochemical performance sodium-ion batteries. In this review, the graphene-based nanocomposites were introduced according to the following main categories: graphene surface modification and doping, three-dimensional structured graphene, graphene coated on the surface of active materials, and the intercalation layer stacked graphene. Through one or more of the above strategies, graphene is compounded with active substances to prepare the nanocomposite electrode, which is applied as the anode or cathode to sodium-ion batteries. The recent research progress of graphene-based nanocomposites for SIBs is also summarized in this study based on the above categories, especially for nanocomposite fabricate methods, the structural characteristics of electrodes as well as the influence of graphene on the performance of the SIBs. In addition, the relevant mechanism is also within the scope of this discussion, such as synergistic effect of graphene with active substances, the insertion/deintercalation process of sodium ions in different kinds of nanocomposites, and electrochemical reaction mechanism in the energy storage. At the end of this study, a series of strategies are summarized to address the challenges of graphene-based nanocomposites and several critical research prospects of SIBs that provide insights for future investigations.
Collapse
Affiliation(s)
- Mai Li
- College of Science, Donghua University, Shanghai 201620, China
| | - Kailan Zhu
- College of Science, Donghua University, Shanghai 201620, China
| | - Hanxue Zhao
- College of Science, Donghua University, Shanghai 201620, China
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Li M, Zhu K, Zhao H, Meng Z, Wang C, Chu PK. Construction of α-MnO 2 on Carbon Fibers Modified with Carbon Nanotubes for Ultrafast Flexible Supercapacitors in Ionic Liquid Electrolytes with Wide Voltage Windows. NANOMATERIALS 2022; 12:nano12122020. [PMID: 35745359 PMCID: PMC9228112 DOI: 10.3390/nano12122020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023]
Abstract
In this study, α-MnO2 and Fe2O3 nanomaterials are prepared on a carbon fiber modified with carbon nanotubes to produce the nonbinder core–shell positive (α-MnO2@CNTs/CC) and negative (Fe2O3@CNTs/CC) electrodes that can be operated in a wide voltage window in ultrafast asymmetrical flexible supercapacitors. MnO2 and Fe2O3 have attracted wide research interests as electrode materials in energy storage applications because of the abundant natural resources, high theoretical specific capacities, environmental friendliness, and low cost. The electrochemical performance of each electrode is assessed in 1 M Na2SO4 and the energy storage properties of the supercapacitors consisting of the two composite electrodes are determined in Na2SO4 and EMImBF4 electrolytes in the 2 V and 4 V windows. The 2 V supercapacitor can withstand a large scanning rate of 5000 mV S−1 without obvious changes in the cyclic voltammetry (CV) curves, besides showing a maximum energy density of 57.29 Wh kg−1 at a power density of 833.35 W kg−1. Furthermore, the supercapacitor retains 87.06% of the capacity after 20,000 galvanostatic charging and discharging (GCD) cycles. The 4 V flexible supercapacitor shows a discharging time of 1260 s and specific capacitance of 124.8 F g−1 at a current of 0.5 mA and retains 87.77% of the initial specific capacitance after 5000 GCD cycles. The mechanical robustness and practicality are demonstrated by physical bending and the powering of LED arrays. In addition, the contributions of the active materials to the capacitive properties and the underlying mechanisms are explored and discussed
Collapse
Affiliation(s)
- Mai Li
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
- Correspondence: (M.L.); (Z.M.)
| | - Kailan Zhu
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
| | - Hanxue Zhao
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science, Donghua University, Shanghai 201620, China
- Correspondence: (M.L.); (Z.M.)
| | - Chunrui Wang
- College of Science, Donghua University, Shanghai 201620, China; (K.Z.); (H.Z.); (C.W.)
| | - Paul K. Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China;
| |
Collapse
|
5
|
Wu J, Raza W, Wang P, Hussain A, Ding Y, Yu J, Wu Y, Zhao J. Zn-doped MnO2 ultrathin nanosheets with rich defects for high performance aqueous supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Li L, Wang H, Liang T, Cao JM, Yan C, Wu XL. Natural ore molybdenite as a high-capacity and cheap anode material for advanced lithium-ion capacitors. NANOTECHNOLOGY 2022; 33:255401. [PMID: 35294936 DOI: 10.1088/1361-6528/ac5e6e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Hybrid lithium-ion capacitors (LICs) receive special interests because they work by combining the merits of high-capacity lithium-ion batteries and high-rate capacitors in a Li salt containing electrolyte, so as to bridge the gap between the two devices. One of main challenges for LICs is to develop inexpensive and superior anode materials at high rates. In this work, natural molybdenite was utilized as precursor to achieve the scalable production of cheap MoS2/carbon composites. This molybdenite-derived MoS2/carbon electrode can not only exhibit excellent Li+-storage performances including ultrahigh specific capacity (1427 mAh g-1after 1000 cycles at 1 A g-1) and rate capability (554 mAh g-1at 10 A g-1), but also possess four-times higher tap density than that of commercial graphite. By employing MoS2/carbon as the anode and activated carbon as the cathode, the as-assembled LIC device delivers both high energy//high power density and long cycle lifespan. Furthermore, the price is nearly 200 orders of magnitude lower than the traditional high-purity chemicals, which can be easily scaled up to achieve high-throughput production.
Collapse
Affiliation(s)
- Lingyao Li
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, People's Republic of China
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, People's Republic of China
| | - Tian Liang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, People's Republic of China
| | - Jun-Ming Cao
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, People's Republic of China
| | - Chunjie Yan
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, People's Republic of China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, People's Republic of China
- National & Local United Engineering Lab for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
7
|
Li M, Zhu K, Meng Z, Hu R, Wang J, Wang C, Chu PK. Efficient coupling of MnO 2/TiN on carbon cloth positive electrode and Fe 2O 3/TiN on carbon cloth negative electrode for flexible ultra-fast hybrid supercapacitors. RSC Adv 2021; 11:35726-35736. [PMID: 35492775 PMCID: PMC9043465 DOI: 10.1039/d1ra05742a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/26/2021] [Indexed: 11/21/2022] Open
Abstract
Recent research and development of energy storage devices has focused on new electrode materials because of the critical effects on the electrochemical properties of supercapacitors. In particular, MnO2 and Fe2O3 have drawn extensive attention because of their low cost, high theoretical specific capacity, environmental friendliness, and natural abundance. In this study, MnO2 ultrathin nanosheet arrays and Fe2O3 nanoparticles are fabricated on TiN nanowires to produce binder-free core–shell positive and negative electrodes for a flexible and ultra-fast hybrid supercapacitor. The MnO2/TiN/CC electrode shows larger pseudocapacitance contributions than MnO2/CC. For example, at a scanning rate of 2 mV s−1, the pseudocapacitance contribution of MnO2/TiN/CC is 87.81% which is nearly 25% bigger than that of MnO2/CC (71.26%). The supercapacitor can withstand a high scanning rate of 5000 mV s−1 in the 2 V window and exhibits a maximum energy density of 71.19 W h kg−1 at a power density of 499.79 W kg−1. Even at 5999.99 W kg−1, it still shows an energy density of 31.3 W h kg−1 and after 10 000 cycles, the device retains 81.16% of the initial specific capacitance. The activation mechanism is explored and explained. MnO2 ultrathin nanosheet arrays and Fe2O3 nanoparticles are fabricated on carbon based TiN nanowires to produce binder-free and core–shell positive and negative electrodes for a flexible and ultra-fast hybrid supercapacitor.![]()
Collapse
Affiliation(s)
- Mai Li
- College of Science, Donghua University Shanghai 201620 China
| | - Kailan Zhu
- College of Science, Donghua University Shanghai 201620 China
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science, Donghua University Shanghai 201620 China
| | - Ruihua Hu
- College of Science, Donghua University Shanghai 201620 China
| | - Jiale Wang
- College of Science, Donghua University Shanghai 201620 China
| | - Chunrui Wang
- College of Science, Donghua University Shanghai 201620 China
| | - Paul K Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science, Donghua University Shanghai 201620 China
| |
Collapse
|
8
|
Li X, Han D, Gong Z, Wang Z. Nest-Like MnO 2 Nanowire/Hierarchical Porous Carbon Composite for High-Performance Supercapacitor from Oily Sludge. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2715. [PMID: 34685155 PMCID: PMC8537434 DOI: 10.3390/nano11102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
In the aim to go beyond the performance tradeoffs of classic electric double-layer capacitance and pseudo-capacitance, composites made out of carbon and pseudo-capacitive materials have been a hot-spot strategy. In this paper, a nest-like MnO2 nanowire/hierarchical porous carbon (HPC) composite (MPC) was successfully fabricated by a controllable in situ chemical co-precipitation method from oily sludge waste. Due to the advantages of high surface area and fast charge transfer for HPC as well as the large pseudo-capacitance for MnO2 nanowires, the as-prepared MPC has good capacitance performance with a specific capacitance of 437.9 F g-1 at 0.5 A g-1, favorable rate capability of 79.2% retention at 20 A g-1, and long-term cycle stability of 78.5% retention after 5000 cycles at 5 A g-1. Meanwhile, an asymmetric supercapacitor (ASC) was assembled using MPC as the cathode while HPC was the anode, which exhibits a superior energy density of 58.67 W h kg-1 at the corresponding power density of 498.8 W kg-1. These extraordinary electrochemical properties highlight the prospect of our waste-derived composites electrode material to replace conventional electrode materials for a high-performance supercapacitor.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (D.H.); (Z.W.)
| | - Dong Han
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (D.H.); (Z.W.)
| | - Zhiqiang Gong
- State Grid Shandong Electric Power Research Institute, Jinan 250003, China;
| | - Zhenbo Wang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (D.H.); (Z.W.)
| |
Collapse
|
9
|
Fabrication of Bimetallic Oxides (MCo2O4: M=Cu, Mn) on Ordered Microchannel Electro-Conductive Plate for High-Performance Hybrid Supercapacitors. SUSTAINABILITY 2021. [DOI: 10.3390/su13179896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AB2O4-type binary-transition metal oxides (BTMOs) of CuCo2O4 and MnCo2O4 were successfully prepared on ordered macroporous electrode plates (OMEP) for supercapacitors. Under the current density of 5 mA cm−2, the CuCo2O4/OMEP electrode achieved a specific capacitance of 1199 F g−1. The asymmetric supercapacitor device prepared using CuCo2O4/OMEP as the positive electrode and carbon-based materials as the negative electrode (CuCo2O4/OMEP//AC) achieved the power density of 14.58 kW kg−1 under the energy density of 11.7 Wh kg−1. After 10,000 GCD cycles, the loss capacitance of CuCo2O4/OMEP//AC is only 7.5% (the retention is 92.5%). The MnCo2O4/OMEP electrode shows the specific and area capacitance of 843 F g−1 and 5.39 F cm−2 at 5 mA cm−2. The MnCo2O4/OMEP-based supercapacitor device (MnCo2O4/OMEP//AC) has a power density of 8.33 kW kg−1 under the energy density of 11.6 Wh kg−1 and the cycle stability was 90.2% after 10,000 cycles. The excellent power density and cycle stability prove that the prepared hybrid supercapacitor fabricated under silicon process has a good prospect as the power buffer device for solar cells.
Collapse
|
10
|
Pseudocapacitive Mn-Co mixed oxides obtained by thermal decomposition of manganese hexacyanocobaltate in presence of carbon structures. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|