1
|
Dong Z, Zhou Q. Carbon-based nanostructured materials incorporating carbon dots for supercapacitors: a review. NANOSCALE 2025; 17:9786-9803. [PMID: 40152559 DOI: 10.1039/d4nr05096g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Carbon dots (CDs) exhibit unique quantum confinement effects and edge characteristics, in addition to their exceptional stability, large specific surface area and electrical conductivity. One research direction for CDs is to prepare these materials at a low cost and with a high quantum yield. Specifically, CDs encompass CQDs, GQDs, CNDs, and CPDs. Another direction for enhancing the performance of materials is combining various carbon dots with different materials, such as porous carbon, three-dimensional graphene, carbon nanofiber (CNT) fabrics, and networks of CNTs. The combination of various types of carbon dots with 3D nanostructures results in distinct properties. This review aims to summarize recent advancements in 3D carbon-based nanostructured materials incorporating carbon dots for SC applications while documenting their electrochemical properties in a tabular form. Finally, the primary challenges and future perspectives concerning electrode materials are discussed to meaningfully contribute to the advancement of high-performance supercapacitors (SCs).
Collapse
Affiliation(s)
- Zhiwei Dong
- Yunnan Normal University, Yuhua District No. 1, Kunming 650500, China.
| | - Qihang Zhou
- Yunnan Normal University, Yuhua District No. 1, Kunming 650500, China.
| |
Collapse
|
2
|
Khanam Z, Xiong T, Yang F, Su H, Luo L, Li J, Koroma M, Zhou B, Mushtaq M, Huang Y, Ouyang T, Balogun MS. Endogenous Interfacial Mo-C/N-Mo-S Bonding Regulates the Active Mo Sites for Maximized Li + Storage Areal Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311773. [PMID: 38446094 DOI: 10.1002/smll.202311773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Active sites, mass loading, and Li-ion diffusion coefficient are the benchmarks for boosting the areal capacity and storage capability of electrode materials for lithium-ion batteries. However, simultaneously modulating these criteria to achieve high areal capacity in LIBs remains challenging. Herein, MoS2 is considered as a suitable electroactive host material for reversible Li-ion storage and establish an endogenous multi-heterojunction strategy with interfacial Mo-C/N-Mo-S coordination bonding that enables the concurrent regulation of these benchmarks. This strategy involves architecting 3D integrated conductive nanostructured frameworks composed of Mo2C-MoN@MoS2 on carbon cloth (denoted as C/MMMS) and refining the sluggish kinetics in the MoS2-based anodes. Benefiting from the rich hetero-interface active sites, optimized Li adsorption energy, and low diffusion barrier, C/MMMS reaches a mass loading of 12.11 mg cm-2 and showcases high areal capacity and remarkable rate capability of 9.6 mAh cm-2@0.4 mA cm-2 and 2.7 mAh cm-2@6.0 mA cm-2, respectively, alongside excellent stability after 500 electrochemical cycles. Moreover, this work not only affirms the outstanding performance of the optimized C/MMMS as an anode material for supercapacitors, underscoring its bifunctionality but also offers valuable insight into developing endogenous transition metal compound electrodes with high mass loading for the next-generation high areal capacity energy storage devices.
Collapse
Affiliation(s)
- Zeba Khanam
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Tuzhi Xiong
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Fang Yang
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Hailan Su
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Li Luo
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Jieqiong Li
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Malcolm Koroma
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bowen Zhou
- Ningxiang Country Garden School, 88 Ouzhou South Rd, Changsha, 410600, P. R. China
| | - Muhammad Mushtaq
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - M-Sadeeq Balogun
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
3
|
Jia X, Du Y, Xie F, Li H, Zhang M. Enhancing Electron/Ion Transport in SnO 2 Quantum Dots Decorated Polyaniline/Graphene Hybrid Fibers for Wearable Supercapacitors with High Energy Density. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17937-17945. [PMID: 38530251 DOI: 10.1021/acsami.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Fiber-based supercapacitors are the potential power sources in the field of wearable electronics and energy storage textiles due to their unique advantages of electrochemical properties and mechanical flexibility, but achieving high energy density and practical energy supply still presents some challenges. In this study, we reported an approach of microfluidic assisted wet-spinning to fabricate SnO2 quantum dots encapsulated polyaniline/graphene hybrid fibers (SnO2 QDs@PGF) by incorporating uniformly polyaniline into graphene fibers and covalently bridging SnO2 quantum dots. The assembled SnO2 QDs@PGF fiber-typed flexible supercapacitors exhibit an ultralarge specific areal capacitance of 925 mF cm-2 in PVA/H2SO4, superior rate capabilities, and capacitance retention of 88% after 8000 cycles, indicating that the SnO2 QDs@PGF possess near-ideal capacitance properties, efficient ion transfer rate, and good cycling stability. In the EMITFSI/PVDF-HFP electrolyte system, SnO2 QDs@PGF realize a wide operating potential window of 2.5 V, a specific areal capacitance of 678.4 mF cm-2, and an energy density of 147.2 μWh cm-2 at 500 μW cm-2, which can be utilized to power an alarm clock, an electronic timer, and a desk lamp with a requirement of a 3 V battery. The exceptional performance of the SnO2 QDs@PGF can be attributed to the molecular-level homogeneous composite of granular polyaniline and graphene nanosheets and the interfacial C-O-Sn covalent coupling strategy employed between SnO2 QDs and PGF. These avenues not only effectively prevent the undesirable restacking of graphene nanosheets but also increase the interlayer electroactive sites, ordered ion diffusion channels, and strong interfacial charge transfer.
Collapse
Affiliation(s)
- Xiaoyu Jia
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yuan Du
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Fanyu Xie
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Hongwei Li
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Mei Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| |
Collapse
|
4
|
Liu D, Kim S, Choi WM. Facile Synthesis of Nitrogen-Doped Graphene Quantum Dots/MnCO 3/ZnMn 2O 4 on Ni Foam Composites for High-Performance Supercapacitor Electrodes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:884. [PMID: 38399135 PMCID: PMC10890349 DOI: 10.3390/ma17040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
This study reports the facile synthesis of rationally designed composite materials consisting of nitrogen-doped graphene quantum dots (N-GQDs) and MnCO3/ZnMn2O4 (N/MC/ZM) on Ni foam using a simple hydrothermal method to produce high-performance supercapacitor applications. The N/MC/ZM composite was uniformly synthesized on a Ni foam surface with the hierarchical structure of microparticles and nanosheets, and the uniform deposition of N-GQDs on a MC/ZM surface was observed. The incorporation of N-GQDs with MC/ZM provides good conductivity, charge transfer, and electrolyte diffusion for a better electrochemical performance. The N/MC/ZM composite electrode delivered a high specific capacitance of 960.6 F·g-1 at 1 A·g-1, low internal resistance, and remarkable cycling stability over 10,000 charge-discharge cycles. Additionally, an all-flexible solid-state asymmetric supercapacitor (ASC) device was fabricated using the N/MC/ZM composite electrode. The fabricated ASC device produced a maximum energy density of 58.4 Wh·kg-1 at a power density of 800 W·kg-1 and showed a stable capacitive performance while being bent, with good mechanical stability. These results provide a promising and effective strategy for developing supercapacitor electrodes with a high areal capacitance and high energy density.
Collapse
Affiliation(s)
- Di Liu
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (D.L.); (S.K.)
| | - Soeun Kim
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (D.L.); (S.K.)
- Division of Advanced Material, Korea Research Institution of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Won Mook Choi
- School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea; (D.L.); (S.K.)
| |
Collapse
|
5
|
Hu L, Li X, Guo X, Xu M, Shi Y, Herve NB, Xiang R, Zhang Q. Electret Modulation Strategy to Enhance the Photosensitivity Performance of Two-Dimensional Molybdenum Sulfide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59704-59713. [PMID: 38087993 DOI: 10.1021/acsami.3c14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Due to the limited light absorption efficiency of atomic thickness layers and the existence of quenching effects, photodetectors solely made of transition metal dichalcogenides (TMDs) have exhibited an unsatisfactory detection performance. In this article, electret/TMD hybridized devices were proposed by vertically coupling a MoS2 channel and the PTFE film, which reveals an optimized photodetection behavior. Negative charges were generated in the PTFE layer through the corona charging method, akin to applying a negative bias on the MoS2 channel in lieu of a traditional voltage-driven back gate. Under a charging voltage of -6 kV, PTFE/MoS2 devices reveal improved photodetection performance (Rhybrid = 67.95A/W versus Ronly = 3.37 A/W, at 470 nm, 1.20 mW cm-2) and faster recovery speed (τd(hybrid) = 2000 ms versus τd(only) = 2900 ms) compared to those bare MoS2 counterparts. The optimal detection performance (2 orders of magnitude) was obtained when the charging voltage was -2 kV, limited by the minimum of the carrier density in MoS2 channels. This study provides an alternative strategy to optimize optoelectronic devices based on the 2D components through non-voltage-driven gating.
Collapse
Affiliation(s)
- Lian Hu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
| | - Xin Li
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xinyu Guo
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
| | - Minxuan Xu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Yueqin Shi
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Nduwarugira B Herve
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| | - Rong Xiang
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| | - Qi Zhang
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
6
|
Sharma GK, Hor AA, Hashmi SA, Kaur D. Directly Sputtered Molybdenum Disulfide Nanoworms Decorated with Binder-less VN and W 2N Nanoarrays for Bendable Large-Scale Asymmetric Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922146 DOI: 10.1021/acsami.3c12393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Considering the superior capacitive performance and rich redox kinetics, the two-dimensional (2D) layered molybdenum disulfide (MoS2) and transition metal nitrides (TMNs) have emerged as the latest set of nanomaterials. Direct incorporation of key materials vanadium nitride (VN) and tungsten nitride (W2N) into a MoS2 array has been achieved on cost-effective, bendable stainless steel (SS) foil via a reactive cosputtering route. Herein, we have utilized the synergistic effect of intermixed nanohybrids to develop a flexible asymmetric supercapacitor (FASC) device from MoS2-VN@SS (negative) and MoS2-W2N@SS (positive) electrodes. As-constructed FASC cell possesses a maximum operational potential of 1.80 V and an exceptional gravimetric capacitance of 200 F g-1 at a sweep rate of 5 mV s-1. The sustained capacitive performance mainly accounts for the synergism induced through unique interfacial surface architecture provided by MoS2 nanoworms and TMN conductive hosts. The sulfur and nitrogen edges ensure the transport channels to Li+/SO4-2 ions for intercalation/deintercalation into the composite nanostructured thin film, further promoting the pseudocapacitive behavior. Consequently, the supercapacitor cell exhibits a distinctive specific energy of 87.91 Wh kg-1 at 0.87 kW kg-1 specific power and a reduced open circuit potential (OCP) decay rate (∼42% self-discharge after 60 min). Moreover, the assembled flexible device exhibits nearly unperturbed electrochemical response even at bending at 165° angle and illustrates a commendable cyclic life-span of 82% after 20,000 charge-discharge cycles, elucidating advanced mechanical robustness and capacitance retentivity. The powering of a multicolor light-emitting diode (LED) and electronic digital watch facilitates the practical evidence to open up possibilities in next-generation state-of-the-art wearable and miniaturized energy storage systems.
Collapse
Affiliation(s)
- Gagan Kumar Sharma
- Functional Nanomaterials Research Laboratory (FNRL), Department of Physics and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
- Nanoelectronics Centre, Advanced Technology Institute, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Abbas Ali Hor
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Safir Ahmad Hashmi
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Davinder Kaur
- Functional Nanomaterials Research Laboratory (FNRL), Department of Physics and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
7
|
Xu X, Xu D, Ding J, Zhou P, Ying Y, Liu Y. Nitrogen-doped graphene quantum dots embedding CuCo-LDH hierarchical hollow structure for boosted charge storage capability in supercapacitor. J Colloid Interface Sci 2023; 649:355-363. [PMID: 37352566 DOI: 10.1016/j.jcis.2023.06.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
The nanostructure optimization of layered double hydroxide (LDH) can effectively alleviate fragile agglomerated problems. Herein, nitrogen-doped graphene quantum dots (NGQDs) embedded in CuCo-LDH hierarchical hollow structure is synthesized by hydrothermal and impregnation methods. The electrochemical results show that the ordered multi-component structure could effectively inhibit the aggregation and layer stacking. At the same time, the hierarchical structure establishes new electron and ion transfer channels, greatly reducing the resistance of interlayer transport and accelerating the diffusion rate of electrolyte ions. Besides, NGQDs have both good electrical conductivity and abundant active sites, which can further improve the electron transmission rate and effectively strengthen the energy storage capacity of the material. Therefore, the large specific capacity of 1009 F g-1 can be displayed at 1 A g-1. The energy density of the assembled carbon cloth (CC)@CuCo-LDH/NGQDs//activated carbon (AC) device can reach 58.6 Wh kg-1 at 850 W kg-1. Above test results indicate that CC@CuCo-LDH/NGQDs//AC devices exhibit stable multi-component hierarchical structure and excellent electrical conductivity, which provides an effective strategy for enhancing the electrochemical characteristics of asymmetric supercapacitors.
Collapse
Affiliation(s)
- Xiaojie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dongbo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinrui Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengjie Zhou
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
8
|
Li Y, Sun Y, Zhang S, Wu X, Song M, Jiao M, Qin Q, Mi L. Self-assembled molybdenum disulfide nanoflowers regulated by lithium sulfate for high performance supercapacitors. RSC Adv 2023; 13:26509-26515. [PMID: 37671349 PMCID: PMC10476554 DOI: 10.1039/d3ra04852g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
Recently, molybdenum disulfide (MoS2) has been extensively investigated as a promising pseudocapacitor electrode material. However, MoS2 usually exhibits inferior rate capability and cyclability, which restrain its practical application in energy storage. In this work, MoS2 nanoflowers regulated by Li2SO4 (L-MoS2) are successfully fabricated via intercalating solvated Li ions. Via appropriate intercalation of Li2SO4, MoS2 nanosheets could self-assemble to form L-MoS2 nanoflowers with an interlayer spacing of 0.65 nm. Due to the large specific surface area (23.7 m2 g-1) and high 1T phase content (77.5%), L-MoS2 as supercapacitor electrode delivers a maximum specific capacitance of 356.7 F g-1 at 1 A g-1 and maintains 49.8% of capacitance retention at 20 A g-1. Moreover, the assembled L-MoS2 symmetric supercapacitor (SSC) device displays an energy density of 6.5 W h kg-1 and 79.6% of capacitance retention after 3000 cycles.
Collapse
Affiliation(s)
- Yunan Li
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yang Sun
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Sen Zhang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Xueling Wu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Meng Song
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Qi Qin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 China
| | - Liwei Mi
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology Zhengzhou 450007 China
| |
Collapse
|
9
|
Ismail KBM, Arun Kumar M, Mahalingam S, Kim J, Atchudan R. Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4471. [PMID: 37374654 DOI: 10.3390/ma16124471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Energy storage and conversion are critical components of modern energy systems, enabling the integration of renewable energy sources and the optimization of energy use. These technologies play a key role in reducing greenhouse gas emissions and promoting sustainable development. Supercapacitors play a vital role in the development of energy storage systems due to their high power density, long life cycles, high stability, low manufacturing cost, fast charging-discharging capability and eco-friendly. Molybdenum disulfide (MoS2) has emerged as a promising material for supercapacitor electrodes due to its high surface area, excellent electrical conductivity, and good stability. Its unique layered structure also allows for efficient ion transport and storage, making it a potential candidate for high-performance energy storage devices. Additionally, research efforts have focused on improving synthesis methods and developing novel device architectures to enhance the performance of MoS2-based devices. This review article on MoS2 and MoS2-based nanocomposites provides a comprehensive overview of the recent advancements in the synthesis, properties, and applications of MoS2 and its nanocomposites in the field of supercapacitors. This article also highlights the challenges and future directions in this rapidly growing field.
Collapse
Affiliation(s)
- Kamal Batcha Mohamed Ismail
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Manoharan Arun Kumar
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
10
|
Pi X, Sun X, Wang R, Chen C, Wu S, Zhan F, Zhong J, Wang Q, Ken Ostrikov K. MoS 2 nanosheets on plasma-nitrogen-doped carbon cloth for high-performance flexible supercapacitors. J Colloid Interface Sci 2023; 629:227-237. [PMID: 36152579 DOI: 10.1016/j.jcis.2022.09.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022]
Abstract
With the surging demand for flexible and portable electronic devices featuring high energy and power density, the development of next-generation lightweight, flexible energy storage devices is crucial. However, achieving the expected energy and power density of supercapacitors remains a great challenge. This work reports a facile plasma-enabled method for preparing supercapacitor electrodes made of MoS2 nanosheets grown on flexible and lightweight N-doped carbon cloth (NCC). The MoS2/NCC presents an outstanding specific capacitance of 3834.28 mF/cm2 at 1 mA/cm2 and energy density of 260.94 µWh/cm2 at a power density of 354.48 µW/cm2. An aqueous symmetric supercapacitor fitted with two MoS2/NCC electrodes achieved the maximum energy density of 138.12 µWh/cm2 and the highest power density of 7,417.33 µW/cm2, along with the excellent cycling stability of 83.3 % retention over 10,000 cycles. The high-performance energy storage ASSSs (all-solid-state supercapacitors) are demonstrated to power devices in both rigid and flexible operation modes. This work provides a new perspective for fabricating high-performance all-solid-state flexible supercapacitors for clean energy storage.
Collapse
Affiliation(s)
- Xiaohu Pi
- Key Laboratory of Photovoltaic and Energy Conversation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui, PR China; University of Science and Technology of China, 230026 Hefei, PR China; Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Xuxu Sun
- Key Laboratory of Photovoltaic and Energy Conversation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui, PR China; University of Science and Technology of China, 230026 Hefei, PR China
| | - Ruiqi Wang
- Key Laboratory of Photovoltaic and Energy Conversation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui, PR China; University of Science and Technology of China, 230026 Hefei, PR China
| | - Changle Chen
- Key Laboratory of Photovoltaic and Energy Conversation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui, PR China; University of Science and Technology of China, 230026 Hefei, PR China
| | - Shengbing Wu
- Key Laboratory of Xin'an Medical Education Department, Anhui University of CM, Hefei 230038, PR China
| | - Furu Zhan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Junbo Zhong
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Qi Wang
- Key Laboratory of Photovoltaic and Energy Conversation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui, PR China; University of Science and Technology of China, 230026 Hefei, PR China; Key Laboratory of Xin'an Medical Education Department, Anhui University of CM, Hefei 230038, PR China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology QUT, Brisbane, QLD 4000, Australia
| |
Collapse
|
11
|
Bai Y, Liang X, Yang X, Wang L, Li X. Flexible zinc ion hybrid capacitors with high energy density and long cycling life based on nanoneedle-like MnO2@CC electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
MoS2 nanosheet loaded Fe2O3 @ carbon cloth flexible composite electrode material for quasi-solid asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Yang C, Wang Y, Wu Z, Zhang Z, Hu N, Peng C. Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors. NANOMATERIALS 2022; 12:nano12060901. [PMID: 35335714 PMCID: PMC8954772 DOI: 10.3390/nano12060901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023]
Abstract
This study presents three-dimensional (3D) MoS2/reduced graphene oxide (rGO)/graphene quantum dots (GQDs) hybrids with improved gas sensing performance for NO2 sensors. GQDs were introduced to prevent the agglomeration of nanosheets during mixing of rGO and MoS2. The resultant MoS2/rGO/GQDs hybrids exhibit a well-defined 3D nanostructure, with a firm connection among components. The prepared MoS2/rGO/GQDs-based sensor exhibits a response of 23.2% toward 50 ppm NO2 at room temperature. Furthermore, when exposed to NO2 gas with a concentration as low as 5 ppm, the prepared sensor retains a response of 15.2%. Compared with the MoS2/rGO nanocomposites, the addition of GQDs improves the sensitivity to 21.1% and 23.2% when the sensor is exposed to 30 and 50 ppm NO2 gas, respectively. Additionally, the MoS2/rGO/GQDs-based sensor exhibits outstanding repeatability and gas selectivity. When exposed to certain typical interference gases, the MoS2/rGO/GQDs-based sensor has over 10 times higher sensitivity toward NO2 than the other gases. This study indicates that MoS2/rGO/GQDs hybrids are potential candidates for the development of NO2 sensors with excellent gas sensitivity.
Collapse
Affiliation(s)
- Cheng Yang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; (C.Y.); (Z.W.); (Z.Z.); (C.P.)
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Yanyan Wang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; (C.Y.); (Z.W.); (Z.Z.); (C.P.)
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
- Correspondence: (Y.W.); (N.H.)
| | - Zhekun Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; (C.Y.); (Z.W.); (Z.Z.); (C.P.)
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Zhanbo Zhang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; (C.Y.); (Z.W.); (Z.Z.); (C.P.)
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (Y.W.); (N.H.)
| | - Changsi Peng
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; (C.Y.); (Z.W.); (Z.Z.); (C.P.)
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
14
|
3D Cross-linked Ti 3C 2T x-Ca-SA films with expanded Ti 3C 2T x interlayer spacing as freestanding electrode for all-solid-state flexible pseudocapacitor. J Colloid Interface Sci 2021; 610:295-303. [PMID: 34923268 DOI: 10.1016/j.jcis.2021.10.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022]
Abstract
Ti3C2Tx, a member of the MXene, has attracted extensive interest because of its high conductivity, unique two-dimensional (2D) structure and intrinsic pseudocapacitance for supercapacitors. Flexible and freestanding Ti3C2Tx films are promising electrodes for functioned supercapacitors used in wearable and portable electronic devices. However, the severe self-restacking of 2D Ti3C2Tx nanosheets restraints their practical application. Herein, freestanding and flexible three-dimensional (3D) cross-linked Ti3C2Tx-Ca-SA (sodium alginate) films with expanded Ti3C2Tx interlayer spacing are reported. The expanded interlayer spacing allows more electrolyte ions to quickly intercalate providing more intercalation pseudocapacitance, while the 3D cross-linked microstructure ensures a continuous conductive network facilitating charges transport. Attributing to the unique structure, the Ti3C2Tx-Ca-SA film delivers an outstanding areal capacitance (633 mF cm-2 at 5 mV s-1). Meanwhile, the assembled all-solid-state pseudocapacitor shows good flexibility and capacity stability under various bending conditions. The device exhibits a high energy density up to 12.6 µWh cm-2 at the power density of 375 µW cm-2 and excellent cycling stability, which are much better than prior reported state-of-the-art supercapacitors. This research exploits a simple method to optimize the structure of MXene as state-of-the-art electrodes for high-performance flexible energy-storage devices.
Collapse
|